Simple Nanochannel-Modified Electrode for Sensitive Detection of Alkaline Phosphatase Through Electrochemiluminescence Signal Quenching by Enzymatic Reaction.
{"title":"Simple Nanochannel-Modified Electrode for Sensitive Detection of Alkaline Phosphatase Through Electrochemiluminescence Signal Quenching by Enzymatic Reaction.","authors":"Tianjun Ma, Xuan Luo, Fengna Xi, Nuo Yang","doi":"10.3390/bios15060377","DOIUrl":null,"url":null,"abstract":"<p><p>Development of sensitive and convenient alkaline phosphatase (ALP) detection methods is of great significance for food analysis, biomedical applications, and clinical tests. In this work, a sensitive detection method for ALP was established based on nanochannel-modified electrodes, where the electrochemical luminescence (ECL) signal was quenched by the enzymatic reaction product. Vertically ordered mesoporous silica film (VMSF) was rapidly grown on low-cost ITO via the electrochemically assisted self-assembly (EASA) method. The resulting modified electrode (VMSF/ITO) exhibited a uniform and ordered nanochannel structure with nanochannel diameter of 2-3 nm and charge-selective permeability, enabling the enrichment of cationic ECL emitter tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)<sub>3</sub><sup>2+</sup>). Compared to the ITO electrode, VMSF/ITO increased the ECL signal by 60 times. In the presence of ALP, it catalyzes the hydrolysis of its substrate, disodium phenyl phosphate hydrate (DPP), generating phenol (Phe), which quenched the ECL signal of Ru(bpy)<sub>3</sub><sup>2</sup><sup>+</sup> and the co-reactant N,N-Dipropyl-1-propanamine (TPA). Based on this principle, ECL detection of ALP can be achieved. The linear detection range for ALP was 0.01 U/L to 30 U/L, with a limit of detection (LOD) of 0.008 U/L. The sensor exhibited high selectivity. Combined with the anti-contamination and anti-interference capabilities of VMSF, the constructed sensor enabled the detection of ALP levels in milk samples.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190674/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15060377","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Development of sensitive and convenient alkaline phosphatase (ALP) detection methods is of great significance for food analysis, biomedical applications, and clinical tests. In this work, a sensitive detection method for ALP was established based on nanochannel-modified electrodes, where the electrochemical luminescence (ECL) signal was quenched by the enzymatic reaction product. Vertically ordered mesoporous silica film (VMSF) was rapidly grown on low-cost ITO via the electrochemically assisted self-assembly (EASA) method. The resulting modified electrode (VMSF/ITO) exhibited a uniform and ordered nanochannel structure with nanochannel diameter of 2-3 nm and charge-selective permeability, enabling the enrichment of cationic ECL emitter tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)32+). Compared to the ITO electrode, VMSF/ITO increased the ECL signal by 60 times. In the presence of ALP, it catalyzes the hydrolysis of its substrate, disodium phenyl phosphate hydrate (DPP), generating phenol (Phe), which quenched the ECL signal of Ru(bpy)32+ and the co-reactant N,N-Dipropyl-1-propanamine (TPA). Based on this principle, ECL detection of ALP can be achieved. The linear detection range for ALP was 0.01 U/L to 30 U/L, with a limit of detection (LOD) of 0.008 U/L. The sensor exhibited high selectivity. Combined with the anti-contamination and anti-interference capabilities of VMSF, the constructed sensor enabled the detection of ALP levels in milk samples.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.