Alivia Mandal, Bishwajeet Paul, Biswanath Bhowmik, Raja Reddy Gundreddy, Adolat U Mirzaieva, Kakali Bhadra
{"title":"Sensing of Volatile Organic Compounds by Haller's Structure in Ixodidae Tick: Electroscutumography and Olfactometric Bioassay.","authors":"Alivia Mandal, Bishwajeet Paul, Biswanath Bhowmik, Raja Reddy Gundreddy, Adolat U Mirzaieva, Kakali Bhadra","doi":"10.3390/bios15060358","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Chemosensation in ticks opens a novel and unique field for scientific research. This study highlights ticks' chemosensory system to comprehend its host-searching behavior and other integrated chemistry and biology involving Haller's structure. <b>Methodology:</b> This study combines microanatomical, electrophysiological, and behavioral experiments to investigate the role of Haller's organ in adult ticks in response to different classes of organic compounds. <b>Results:</b> We showed the microscopic anatomy of Haller's organ in <i>Haemaphysalis darjeeling</i>, present at the terminal segment of the first pair of appendages. Haller's structure serves a vital function in perceiving odor. The electrophysiological activity of adult ticks to different classes of organic compounds via electroscutumography was explored at five different concentrations: <i>w</i>/<i>v</i> 0.001, 0.01, 0.1, 1.0, and 2.0%. Among 55 organic compounds, moderate to high stimulation was recorded with pyruvate (13.28 mv at 2%), ammonia (12.26 mv at 2%), benzoic acid (1.99 mv at 0.001%), isobutyric acid (1.39 mv at 0.001%), 2,6-dichlorophenol (1.34 mv at 0.001%), p-Tolualdehyde (1.26 mv at 2%), tetradecane (1.23 mv at 2%), docosane (1.17 mv at 2%), citronellal (1.13 mv at 0.1%), isopropyl acetate (1.05 mv at 0.01%), cyclohexanol (1.03 mv at 2%), 1-octane-3-ol (1.02 mv at 2%), and 1-octanol (1.01 mv at 0.001%). Olfactometric bioassays at <i>w</i>/<i>v</i> 2.0% concentration further confirmed that ammonia, pyruvate, 1-octane-3-ol, hematin porcine, p-Tolualdehyde, methyl salicylate, uric acid, tetradecane, carbon dioxide, propanoic acid, 3-hexanol, hexanoic acid, adenine, 2,6-dichlorophenol, hexadecane, heptanoic acid, pentanoic acid, octadecane, guanine, and nonanoic acid acted as strong attractants, while citronellal, eugenol, butyric acid, geraniol, benzaldehyde, and tiglic aldehyde showed an active repellent effect against the tick species. <b>Conclusions:</b> This investigation provides knowledge of the olfactory sensilla of Haller's structure as biosensors behind tick olfaction and the possibility for chemical detection of diverse attractants and repellents for future development of anti-tick compounds.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15060358","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Chemosensation in ticks opens a novel and unique field for scientific research. This study highlights ticks' chemosensory system to comprehend its host-searching behavior and other integrated chemistry and biology involving Haller's structure. Methodology: This study combines microanatomical, electrophysiological, and behavioral experiments to investigate the role of Haller's organ in adult ticks in response to different classes of organic compounds. Results: We showed the microscopic anatomy of Haller's organ in Haemaphysalis darjeeling, present at the terminal segment of the first pair of appendages. Haller's structure serves a vital function in perceiving odor. The electrophysiological activity of adult ticks to different classes of organic compounds via electroscutumography was explored at five different concentrations: w/v 0.001, 0.01, 0.1, 1.0, and 2.0%. Among 55 organic compounds, moderate to high stimulation was recorded with pyruvate (13.28 mv at 2%), ammonia (12.26 mv at 2%), benzoic acid (1.99 mv at 0.001%), isobutyric acid (1.39 mv at 0.001%), 2,6-dichlorophenol (1.34 mv at 0.001%), p-Tolualdehyde (1.26 mv at 2%), tetradecane (1.23 mv at 2%), docosane (1.17 mv at 2%), citronellal (1.13 mv at 0.1%), isopropyl acetate (1.05 mv at 0.01%), cyclohexanol (1.03 mv at 2%), 1-octane-3-ol (1.02 mv at 2%), and 1-octanol (1.01 mv at 0.001%). Olfactometric bioassays at w/v 2.0% concentration further confirmed that ammonia, pyruvate, 1-octane-3-ol, hematin porcine, p-Tolualdehyde, methyl salicylate, uric acid, tetradecane, carbon dioxide, propanoic acid, 3-hexanol, hexanoic acid, adenine, 2,6-dichlorophenol, hexadecane, heptanoic acid, pentanoic acid, octadecane, guanine, and nonanoic acid acted as strong attractants, while citronellal, eugenol, butyric acid, geraniol, benzaldehyde, and tiglic aldehyde showed an active repellent effect against the tick species. Conclusions: This investigation provides knowledge of the olfactory sensilla of Haller's structure as biosensors behind tick olfaction and the possibility for chemical detection of diverse attractants and repellents for future development of anti-tick compounds.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.