Bayesian bivariate cure rate models using Gaussian copulas.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Seoyoon Cho, Matthew A Psioda, Joseph G Ibrahim
{"title":"Bayesian bivariate cure rate models using Gaussian copulas.","authors":"Seoyoon Cho, Matthew A Psioda, Joseph G Ibrahim","doi":"10.1007/s10985-025-09660-3","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a joint model for multiple time-to-event outcomes where the outcomes have a cure structure. When a subset of a population is not susceptible to an event of interest, traditional survival models cannot accommodate this type of phenomenon. For example, for patients with melanoma, certain modern treatment options can reduce the mortality and relapse rates. Traditional survival models assume the entire population is at risk for the event of interest, i.e., has a non-zero hazard at all times. However, cure rate models allow a portion of the population to be risk-free of the event of interest. Our proposed model uses a novel truncated Gaussian copula to jointly model bivariate time-to-event outcomes of this type. In oncology studies, multiple time-to-event outcomes (e.g., overall survival and relapse-free or progression-free survival) are typically of interest. Therefore, multivariate methods to analyze time-to-event outcomes with a cure structure are potentially of great utility. We formulate a joint model directly on the time-to-event outcomes (i.e., unconditional on whether an individual is cured or not). Dependency between the time-to-event outcomes is modeled via the correlation matrix of the truncated Gaussian copula. A Markov Chain Monte Carlo procedure is proposed for model fitting. Simulation studies and a real data analysis using a melanoma clinical trial data are presented to illustrate the performance of the method and the proposed model is compared to independent models.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-025-09660-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a joint model for multiple time-to-event outcomes where the outcomes have a cure structure. When a subset of a population is not susceptible to an event of interest, traditional survival models cannot accommodate this type of phenomenon. For example, for patients with melanoma, certain modern treatment options can reduce the mortality and relapse rates. Traditional survival models assume the entire population is at risk for the event of interest, i.e., has a non-zero hazard at all times. However, cure rate models allow a portion of the population to be risk-free of the event of interest. Our proposed model uses a novel truncated Gaussian copula to jointly model bivariate time-to-event outcomes of this type. In oncology studies, multiple time-to-event outcomes (e.g., overall survival and relapse-free or progression-free survival) are typically of interest. Therefore, multivariate methods to analyze time-to-event outcomes with a cure structure are potentially of great utility. We formulate a joint model directly on the time-to-event outcomes (i.e., unconditional on whether an individual is cured or not). Dependency between the time-to-event outcomes is modeled via the correlation matrix of the truncated Gaussian copula. A Markov Chain Monte Carlo procedure is proposed for model fitting. Simulation studies and a real data analysis using a melanoma clinical trial data are presented to illustrate the performance of the method and the proposed model is compared to independent models.

基于高斯copuls的贝叶斯二元治愈率模型。
我们提出了一个联合模型,用于多个时间到事件的结果,其中结果具有治愈结构。当种群的一个子集不容易受到感兴趣事件的影响时,传统的生存模型无法适应这种现象。例如,对于黑色素瘤患者,某些现代治疗方案可以降低死亡率和复发率。传统的生存模型假设整个种群在发生感兴趣的事件时处于危险之中,也就是说,在任何时候都具有非零的风险。然而,治愈率模型允许一部分人群在发生利息事件时无风险。我们提出的模型使用一种新的截断高斯copula来联合建模这种类型的双变量时间到事件的结果。在肿瘤学研究中,多时间到事件的结果(例如,总生存期和无复发或无进展生存期)通常是令人感兴趣的。因此,分析具有治愈结构的时间到事件结果的多变量方法具有很大的潜在效用。我们直接制定了一个联合模型的时间到事件的结果(即,无条件的一个人是否被治愈)。时间-事件结果之间的依赖关系通过截断高斯联结的相关矩阵来建模。提出了一种马尔可夫链蒙特卡罗方法进行模型拟合。仿真研究和使用黑色素瘤临床试验数据的真实数据分析展示了该方法的性能,并将所提出的模型与独立模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信