Colorimetric Biosensors: Advancements in Nanomaterials and Cutting-Edge Detection Strategies.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Yubeen Lee, Izzati Haizan, Sang Baek Sim, Jin-Ha Choi
{"title":"Colorimetric Biosensors: Advancements in Nanomaterials and Cutting-Edge Detection Strategies.","authors":"Yubeen Lee, Izzati Haizan, Sang Baek Sim, Jin-Ha Choi","doi":"10.3390/bios15060362","DOIUrl":null,"url":null,"abstract":"<p><p>Colorimetric-based biosensors are practical detection devices that can detect the presence and concentration of biomarkers through simple color changes. Conventional laboratory-based tests are highly sensitive but require long processing times and expensive equipment, which makes them difficult to apply for on-site diagnostics. In contrast, the colorimetric method offers advantages for point-of-care testing and real-time monitoring due to its flexibility, simple operation, rapid results, and versatility across many applications. In order to enhance the color change reactions in colorimetric techniques, functional nanomaterials are often integrated due to their desirable intrinsic properties. In this review, the working principles of nanomaterial-based detection strategies in colorimetric systems are introduced. In addition, current signal amplification methods for colorimetric biosensors are comprehensively outlined and evaluated. Finally, the latest trends in artificial intelligence (AI) and machine learning integration into colorimetric-based biosensors, including their potential for technological advancements in the near future, are discussed. Future research is expected to develop highly sensitive and multifunctional colorimetric methods, which will serve as powerful alternatives for point-of-care testing and self-testing.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190540/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15060362","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Colorimetric-based biosensors are practical detection devices that can detect the presence and concentration of biomarkers through simple color changes. Conventional laboratory-based tests are highly sensitive but require long processing times and expensive equipment, which makes them difficult to apply for on-site diagnostics. In contrast, the colorimetric method offers advantages for point-of-care testing and real-time monitoring due to its flexibility, simple operation, rapid results, and versatility across many applications. In order to enhance the color change reactions in colorimetric techniques, functional nanomaterials are often integrated due to their desirable intrinsic properties. In this review, the working principles of nanomaterial-based detection strategies in colorimetric systems are introduced. In addition, current signal amplification methods for colorimetric biosensors are comprehensively outlined and evaluated. Finally, the latest trends in artificial intelligence (AI) and machine learning integration into colorimetric-based biosensors, including their potential for technological advancements in the near future, are discussed. Future research is expected to develop highly sensitive and multifunctional colorimetric methods, which will serve as powerful alternatives for point-of-care testing and self-testing.

比色生物传感器:纳米材料和前沿检测策略的进展。
基于比色法的生物传感器是一种实用的检测设备,可以通过简单的颜色变化来检测生物标志物的存在和浓度。传统的实验室检测灵敏度很高,但需要较长的处理时间和昂贵的设备,这使得它们难以应用于现场诊断。相比之下,比色法由于其灵活性、简单的操作、快速的结果和跨许多应用的通用性,为即时护理测试和实时监测提供了优势。为了增强比色技术中的变色反应,由于功能纳米材料具有理想的内在特性,因此通常将其集成到比色技术中。本文综述了基于纳米材料的比色系统检测策略的工作原理。此外,目前的信号放大方法的比色生物传感器进行了全面概述和评估。最后,讨论了人工智能(AI)和机器学习集成到基于比色的生物传感器中的最新趋势,包括它们在不久的将来的技术进步潜力。未来的研究有望开发出高灵敏度和多功能比色法,这将成为即时检测和自我检测的有力替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信