Sarah Miny, Gaël Runel, Julien Chlasta, Christelle Bonod
{"title":"Influence of Aging and Diabetes on the Mechanical Properties of Mouse Skin.","authors":"Sarah Miny, Gaël Runel, Julien Chlasta, Christelle Bonod","doi":"10.3390/dermatopathology12020018","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetics accumulate Advanced Glycation End products (AGEs) such as Nε-(carboxymethyl)lysine (CML) in their skin, which can provoke changes in the skin's biomechanical properties. The same changes are also observed during aging. Collagen is one of the first targets of glycation, and this leads to the disruption of the dermis, potentially contributing to the skin complications seen in diabetes, like impaired wound healing and the formation of chronic ulcers. We therefore investigated whether it was possible to detect differences in the biomechanical properties of the reticular dermis by comparing C57/BL6 control mice, type 1 and type 2 diabetic mice, and aged mice.</p><p><strong>Methods: </strong>To investigate this, we used an Atomic Force Microscope (a type of local probe microscope used to visualize the surface topography of a sample) to measure the elastic modulus of each skin sample. The elastic modulus is a parameter that describes a tissue's resistance to elastic deformation when stress is applied. We also determined whether diabetes is associated with the accumulation of AGEs via Western blots.</p><p><strong>Results: </strong>We found that type 2 diabetic mice and aged mice had a stiffer reticular dermis than young control mice. No differences were found in type 1 diabetic mice. The results of the Western blot did not reveal any significant differences in the CML content in different types of mice, although a non-significant increase was found in type 2 diabetic and aged mice. We show that there is a significant positive correlation between the amount of CML in a mouse and the rigidity of its reticular dermis.</p><p><strong>Conclusions/interpretation: </strong>We have demonstrated that increased glycation in mouse skin is correlated with the biomechanical properties of that skin, which explains the wound healing defects diabetic patient's experience. AFM is therefore a powerful technique that could be used to characterize the mechanical effects of treatments aimed at reducing the level of AGEs in the skin.</p>","PeriodicalId":42885,"journal":{"name":"Dermatopathology","volume":"12 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192205/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dermatopathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dermatopathology12020018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diabetics accumulate Advanced Glycation End products (AGEs) such as Nε-(carboxymethyl)lysine (CML) in their skin, which can provoke changes in the skin's biomechanical properties. The same changes are also observed during aging. Collagen is one of the first targets of glycation, and this leads to the disruption of the dermis, potentially contributing to the skin complications seen in diabetes, like impaired wound healing and the formation of chronic ulcers. We therefore investigated whether it was possible to detect differences in the biomechanical properties of the reticular dermis by comparing C57/BL6 control mice, type 1 and type 2 diabetic mice, and aged mice.
Methods: To investigate this, we used an Atomic Force Microscope (a type of local probe microscope used to visualize the surface topography of a sample) to measure the elastic modulus of each skin sample. The elastic modulus is a parameter that describes a tissue's resistance to elastic deformation when stress is applied. We also determined whether diabetes is associated with the accumulation of AGEs via Western blots.
Results: We found that type 2 diabetic mice and aged mice had a stiffer reticular dermis than young control mice. No differences were found in type 1 diabetic mice. The results of the Western blot did not reveal any significant differences in the CML content in different types of mice, although a non-significant increase was found in type 2 diabetic and aged mice. We show that there is a significant positive correlation between the amount of CML in a mouse and the rigidity of its reticular dermis.
Conclusions/interpretation: We have demonstrated that increased glycation in mouse skin is correlated with the biomechanical properties of that skin, which explains the wound healing defects diabetic patient's experience. AFM is therefore a powerful technique that could be used to characterize the mechanical effects of treatments aimed at reducing the level of AGEs in the skin.