Assessing Bioconcentration and Biotransformation of BDE-47 In Vitro: The Relevance of Bioavailable and Intracellular Concentrations.

IF 6.8 Q1 TOXICOLOGY
Paloma De Oro-Carretero, Jon Sanz-Landaluze
{"title":"Assessing Bioconcentration and Biotransformation of BDE-47 In Vitro: The Relevance of Bioavailable and Intracellular Concentrations.","authors":"Paloma De Oro-Carretero, Jon Sanz-Landaluze","doi":"10.3390/jox15030093","DOIUrl":null,"url":null,"abstract":"<p><p>The development of alternative methods that link cellular and predictive toxicity to high-level toxicity is a key focus of current research within the framework of the 3Rs in animal experimentation. In this context, this study aimed to evaluate the previously developed in vitro approach using the zebrafish liver cell line (ZFL) for assessing bioaccumulation and biotransformation of the compound BDE-47, which is more hydrophobic than phenanthrene, and is the compound used in the previous study. For this purpose, experimentally, the internal concentrations in the cells (C<sub>cell</sub>) and the exposure medium of both BDE-47 and its main metabolites were quantified at different exposure times by GC-MS. Additionally, the free bioavailable concentration (C<sub>free</sub>) was determined with a solid-phase microextraction (SPME) experiment. With the aim of refine models, C<sub>cell</sub> and C<sub>free</sub> were also estimated using a predictive chemical distribution model (MBM). Bioconcentration factors (BCFs) were determined by relating all these values, as well as by toxicokinetic fitting and by in vitro-in vivo extrapolation modelling (IVIVE). The results showed a high concordance with the values obtained in vivo. Moreover, the study highlighted the importance of experimentally determining C<sub>free</sub> and C<sub>cell</sub>, as the predicted values can vary depending on the chemical, thereby influencing the BCF outcome. This variation occurs because models do not account for the absorption and biotransformation kinetics of the compounds. The data presented may contribute to refining predictive models.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194305/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15030093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of alternative methods that link cellular and predictive toxicity to high-level toxicity is a key focus of current research within the framework of the 3Rs in animal experimentation. In this context, this study aimed to evaluate the previously developed in vitro approach using the zebrafish liver cell line (ZFL) for assessing bioaccumulation and biotransformation of the compound BDE-47, which is more hydrophobic than phenanthrene, and is the compound used in the previous study. For this purpose, experimentally, the internal concentrations in the cells (Ccell) and the exposure medium of both BDE-47 and its main metabolites were quantified at different exposure times by GC-MS. Additionally, the free bioavailable concentration (Cfree) was determined with a solid-phase microextraction (SPME) experiment. With the aim of refine models, Ccell and Cfree were also estimated using a predictive chemical distribution model (MBM). Bioconcentration factors (BCFs) were determined by relating all these values, as well as by toxicokinetic fitting and by in vitro-in vivo extrapolation modelling (IVIVE). The results showed a high concordance with the values obtained in vivo. Moreover, the study highlighted the importance of experimentally determining Cfree and Ccell, as the predicted values can vary depending on the chemical, thereby influencing the BCF outcome. This variation occurs because models do not account for the absorption and biotransformation kinetics of the compounds. The data presented may contribute to refining predictive models.

体外评估BDE-47的生物浓度和生物转化:生物利用度和细胞内浓度的相关性。
将细胞毒性和预测毒性与高水平毒性联系起来的替代方法的发展是当前动物实验3r框架内研究的重点。在此背景下,本研究旨在评估先前开发的利用斑马鱼肝细胞系(ZFL)评估化合物BDE-47的生物积累和生物转化的体外方法,该化合物比菲更疏水,是先前研究中使用的化合物。为此,实验采用气相色谱-质谱法测定不同暴露时间下BDE-47及其主要代谢物在细胞(cell)和暴露介质中的内部浓度。此外,采用固相微萃取(SPME)实验测定游离生物利用浓度(Cfree)。为了改进模型,还使用预测化学分布模型(MBM)对Ccell和Cfree进行了估计。生物浓度因子(BCFs)通过关联所有这些值,以及毒物动力学拟合和体外体内外推模型(IVIVE)来确定。结果显示与体内得到的数值高度一致。此外,该研究强调了实验确定Cfree和cell的重要性,因为预测值可能因化学物质而异,从而影响BCF结果。这种变化的发生是因为模型没有考虑化合物的吸收和生物转化动力学。提出的数据可能有助于改进预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
1.70%
发文量
21
审稿时长
10 weeks
期刊介绍: The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信