Mia Ståhle, Cristina Popescu, Christoph Rischpler, Han Zhang, Samia Massalha, Leonor Lopes, Axel Rominger, Federico Caobelli
{"title":"New Promising Targets for Imaging in Cardiovascular Diseases.","authors":"Mia Ståhle, Cristina Popescu, Christoph Rischpler, Han Zhang, Samia Massalha, Leonor Lopes, Axel Rominger, Federico Caobelli","doi":"10.1053/j.semnuclmed.2025.05.006","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide, driven by complex and dynamic molecular processes such as inflammation, fibrosis, metabolic dysregulation, thrombosis, and vascular remodeling. While conventional imaging techniques provide valuable anatomical and functional information, they fail to capture these underlying pathophysiological mechanisms at the molecular level. Molecular imaging, particularly with PET and SPECT, offers the potential to noninvasively visualize and quantify these processes, enabling earlier diagnosis, better risk stratification, and more precise treatment guidance. Despite substantial progress in clinical cardiology, there is a growing need for novel radiotracers that can target key disease-driving mechanisms beyond traditional perfusion or viability imaging. Emerging radiopharmaceuticals now enable the assessment of myocardial fibrosis (e.g., collagen-targeted and MMP-targeted tracers), cardiomyocyte stress responses (e.g., oxidative stress, unfolded protein response, endothelin signaling), and metabolic alterations (e.g., fatty acid, ketone, and glucose metabolism). Additionally, new tracers are being developed for thrombosis, vascular inflammation, plaque instability, and even for innovative targets such as cellular senescence and gut-derived inflammatory pathways. These developments reflect a paradigm shift towards imaging-driven phenotyping of cardiovascular disease. This review provides a comprehensive overview of the latest advances in molecular imaging tracers for cardiovascular applications, with a focus on their biological rationale, preclinical and clinical evidence, and translational challenges. We categorize tracers by their mechanistic targets and highlight their potential for integration into precision cardiology.</p>","PeriodicalId":21643,"journal":{"name":"Seminars in nuclear medicine","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in nuclear medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1053/j.semnuclmed.2025.05.006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide, driven by complex and dynamic molecular processes such as inflammation, fibrosis, metabolic dysregulation, thrombosis, and vascular remodeling. While conventional imaging techniques provide valuable anatomical and functional information, they fail to capture these underlying pathophysiological mechanisms at the molecular level. Molecular imaging, particularly with PET and SPECT, offers the potential to noninvasively visualize and quantify these processes, enabling earlier diagnosis, better risk stratification, and more precise treatment guidance. Despite substantial progress in clinical cardiology, there is a growing need for novel radiotracers that can target key disease-driving mechanisms beyond traditional perfusion or viability imaging. Emerging radiopharmaceuticals now enable the assessment of myocardial fibrosis (e.g., collagen-targeted and MMP-targeted tracers), cardiomyocyte stress responses (e.g., oxidative stress, unfolded protein response, endothelin signaling), and metabolic alterations (e.g., fatty acid, ketone, and glucose metabolism). Additionally, new tracers are being developed for thrombosis, vascular inflammation, plaque instability, and even for innovative targets such as cellular senescence and gut-derived inflammatory pathways. These developments reflect a paradigm shift towards imaging-driven phenotyping of cardiovascular disease. This review provides a comprehensive overview of the latest advances in molecular imaging tracers for cardiovascular applications, with a focus on their biological rationale, preclinical and clinical evidence, and translational challenges. We categorize tracers by their mechanistic targets and highlight their potential for integration into precision cardiology.
期刊介绍:
Seminars in Nuclear Medicine is the leading review journal in nuclear medicine. Each issue brings you expert reviews and commentary on a single topic as selected by the Editors. The journal contains extensive coverage of the field of nuclear medicine, including PET, SPECT, and other molecular imaging studies, and related imaging studies. Full-color illustrations are used throughout to highlight important findings. Seminars is included in PubMed/Medline, Thomson/ISI, and other major scientific indexes.