Porous PLLA microspheres dispersed in HA/collagen hydrogel as injectable facial fillers to enhance aesthetic effects.

IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Regenerative Biomaterials Pub Date : 2025-05-23 eCollection Date: 2025-01-01 DOI:10.1093/rb/rbaf049
Miaoran Zhao, Shuhua Chang, Yunpeng Wang, Jun Cao, Yuji Pu, Bin He, Shengsheng Pan
{"title":"Porous PLLA microspheres dispersed in HA/collagen hydrogel as injectable facial fillers to enhance aesthetic effects.","authors":"Miaoran Zhao, Shuhua Chang, Yunpeng Wang, Jun Cao, Yuji Pu, Bin He, Shengsheng Pan","doi":"10.1093/rb/rbaf049","DOIUrl":null,"url":null,"abstract":"<p><p>Injectable facial fillers such as Sculptra<sup>®</sup> stimulate collagen regeneration to fill wrinkles; however, the collagen regeneration is not satisfactory due to the slow emergence of filling effect. In this study, we designed a regenerative dermal filler to provide both immediate and long-lasting filling effects. A hydrogel matrix composed of crosslinked hyaluronic acid (HA) and collagen was engineered to encapsulate porous poly(L-lactide) (PLLA) microspheres and tranexamic acid (TXA). The hydrogel matrix was administered via intradermal injection to achieve wrinkle filling. TXA is released to exert skin-whitening effects, while the porous PLLA microspheres and their degradation product, lactic acid, continuously stimulate collagen regeneration over an extended period. Facial volume increased immediately following hydrogel injection. Large amounts of new Type I and Type III collagen are generated. The porous structure of PLLA microspheres facilitated the 'penetrating growth' of collagen fibers, which effectively filled facial depressions and smoothed wrinkles. Overall, the HA/collagen composite hydrogel filler exhibited excellent esthetic effects.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 ","pages":"rbaf049"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187068/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbaf049","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Injectable facial fillers such as Sculptra® stimulate collagen regeneration to fill wrinkles; however, the collagen regeneration is not satisfactory due to the slow emergence of filling effect. In this study, we designed a regenerative dermal filler to provide both immediate and long-lasting filling effects. A hydrogel matrix composed of crosslinked hyaluronic acid (HA) and collagen was engineered to encapsulate porous poly(L-lactide) (PLLA) microspheres and tranexamic acid (TXA). The hydrogel matrix was administered via intradermal injection to achieve wrinkle filling. TXA is released to exert skin-whitening effects, while the porous PLLA microspheres and their degradation product, lactic acid, continuously stimulate collagen regeneration over an extended period. Facial volume increased immediately following hydrogel injection. Large amounts of new Type I and Type III collagen are generated. The porous structure of PLLA microspheres facilitated the 'penetrating growth' of collagen fibers, which effectively filled facial depressions and smoothed wrinkles. Overall, the HA/collagen composite hydrogel filler exhibited excellent esthetic effects.

多孔聚乳酸微球分散在透明质酸/胶原蛋白水凝胶中,作为可注射的面部填充物,增强美观效果。
可注射的面部填充物,如Sculptra®刺激胶原蛋白再生,填补皱纹;然而,由于填充效果出现缓慢,胶原蛋白的再生并不令人满意。在这项研究中,我们设计了一种再生真皮填充剂,以提供即时和持久的填充效果。设计了一种由交联透明质酸(HA)和胶原组成的水凝胶基质,用于包封多孔聚l -乳酸(PLLA)微球和氨甲环酸(TXA)。水凝胶基质通过皮内注射来实现皱纹填充。释放TXA发挥皮肤美白效果,而多孔PLLA微球及其降解产物乳酸持续刺激胶原蛋白再生。注射水凝胶后,面部体积立即增加。大量新的I型和III型胶原蛋白生成。PLLA微球的多孔结构促进了胶原纤维的“穿透生长”,有效地填充了面部凹陷,平滑了皱纹。总体而言,透明质酸/胶原蛋白复合水凝胶填料具有良好的美学效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Regenerative Biomaterials
Regenerative Biomaterials Materials Science-Biomaterials
CiteScore
7.90
自引率
16.40%
发文量
92
审稿时长
10 weeks
期刊介绍: Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信