Production of bioactive cytokines using plant expression system for cardiovascular cell differentiation from human pluripotent stem cells.

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING
Kozue Murata, Kanae Takamura, Risa Watanabe, Akitomo Nagashima, Miho Miyauchi, Yoshiteru Miyauchi, Hidetoshi Masumoto
{"title":"Production of bioactive cytokines using plant expression system for cardiovascular cell differentiation from human pluripotent stem cells.","authors":"Kozue Murata, Kanae Takamura, Risa Watanabe, Akitomo Nagashima, Miho Miyauchi, Yoshiteru Miyauchi, Hidetoshi Masumoto","doi":"10.1186/s13287-025-04424-0","DOIUrl":null,"url":null,"abstract":"<p><p>Bioactive cytokines such as vascular endothelial growth factor (VEGF) and Activin A are critical for the differentiation of stem cells into vascular endothelial cells and cardiomyocytes. However, production of the cytokines using conventional Escherichia coli or mammalian cell expression systems carries risks of immunogenicity and viral contamination. In this study, we developed a VEGF and Activin A plant expression system and demonstrated that plant-expressed VEGF and Activin A are as active as their commercial counterparts. We also showed that plant-expressed VEGF and Activin A are as efficient as human recombinant counterparts in inducing endothelial cells and cardiomyocytes from human pluripotent stem cells. These results suggest that plant-expressed VEGF and Activin A are promising alternatives for the safe and efficient production of cardiac cells, specifically cardiomyocytes and endothelial cells, for stem cell-based regenerative medicine.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"303"},"PeriodicalIF":7.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188682/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04424-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Bioactive cytokines such as vascular endothelial growth factor (VEGF) and Activin A are critical for the differentiation of stem cells into vascular endothelial cells and cardiomyocytes. However, production of the cytokines using conventional Escherichia coli or mammalian cell expression systems carries risks of immunogenicity and viral contamination. In this study, we developed a VEGF and Activin A plant expression system and demonstrated that plant-expressed VEGF and Activin A are as active as their commercial counterparts. We also showed that plant-expressed VEGF and Activin A are as efficient as human recombinant counterparts in inducing endothelial cells and cardiomyocytes from human pluripotent stem cells. These results suggest that plant-expressed VEGF and Activin A are promising alternatives for the safe and efficient production of cardiac cells, specifically cardiomyocytes and endothelial cells, for stem cell-based regenerative medicine.

利用植物表达系统诱导人多能干细胞向心血管细胞分化产生生物活性细胞因子。
生物活性细胞因子如血管内皮生长因子(VEGF)和激活素A是干细胞向血管内皮细胞和心肌细胞分化的关键。然而,使用传统的大肠杆菌或哺乳动物细胞表达系统生产细胞因子存在免疫原性和病毒污染的风险。在本研究中,我们开发了VEGF和Activin a植物表达系统,并证明了植物表达的VEGF和Activin a与商业化的VEGF和Activin a一样具有活性。我们还发现,植物表达的VEGF和激活素A在诱导人多能干细胞生成内皮细胞和心肌细胞方面与人表达的VEGF和激活素A一样有效。这些结果表明,植物表达的VEGF和激活素A是安全有效地生产心脏细胞,特别是心肌细胞和内皮细胞的有希望的替代品,用于干细胞再生医学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信