{"title":"Impacts of Cerium Dioxide Nanoparticles on the Soil-Plant System and Their Potential Agricultural Applications.","authors":"Nadeesha L Ukwattage, Zhang Zhiyong","doi":"10.3390/nano15120950","DOIUrl":null,"url":null,"abstract":"<p><p>Cerium dioxide nanoparticles (CeO<sub>2</sub>-NPs) are increasingly used in various industrial applications, leading to their inevitable release into the environment including the soil ecosystem. In soil, CeO<sub>2</sub>-NPs are taken up by plants, translocated, and accumulated in plant tissues. Within plant tissues, CeO<sub>2</sub>-NPs have been shown to interfere with critical metabolic pathways, which may affect plant health and productivity. Moreover, their presence in soil can influence soil physico-chemical and biological properties, including microbial communities within the rhizosphere, where they can alter microbial physiology, diversity, and enzymatic activities. These interactions raise concerns about the potential disruption of plant-microbe symbiosis essential for plant nutrition and soil health. Despite these challenges, CeO<sub>2</sub>-NPs hold potential as tools for enhancing crop productivity and resilience to stress, such as drought or heavy metal contamination. However, understanding the balance between their beneficial and harmful effects is crucial for their safe application in agriculture. To date, the overall impact of CeO<sub>2</sub>-NPs on soil -plant system and the underlying mechanism remains unclear. Therefore, this review analyses the recent research findings to provide a comprehensive understanding of the fate of CeO<sub>2</sub>-NPs in soil-plant systems and the implications for soil health, plant growth, and agricultural productivity. As the current research is limited by inconsistent findings, often due to variations in experimental conditions, it is essential to study CeO<sub>2</sub>-NPs under more ecologically relevant settings. This review further emphasizes the need for future research to assess the long-term environmental impacts of CeO<sub>2</sub>-NPs in soil-plant systems and to develop guidelines for their responsible use in sustainable agriculture.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195988/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15120950","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cerium dioxide nanoparticles (CeO2-NPs) are increasingly used in various industrial applications, leading to their inevitable release into the environment including the soil ecosystem. In soil, CeO2-NPs are taken up by plants, translocated, and accumulated in plant tissues. Within plant tissues, CeO2-NPs have been shown to interfere with critical metabolic pathways, which may affect plant health and productivity. Moreover, their presence in soil can influence soil physico-chemical and biological properties, including microbial communities within the rhizosphere, where they can alter microbial physiology, diversity, and enzymatic activities. These interactions raise concerns about the potential disruption of plant-microbe symbiosis essential for plant nutrition and soil health. Despite these challenges, CeO2-NPs hold potential as tools for enhancing crop productivity and resilience to stress, such as drought or heavy metal contamination. However, understanding the balance between their beneficial and harmful effects is crucial for their safe application in agriculture. To date, the overall impact of CeO2-NPs on soil -plant system and the underlying mechanism remains unclear. Therefore, this review analyses the recent research findings to provide a comprehensive understanding of the fate of CeO2-NPs in soil-plant systems and the implications for soil health, plant growth, and agricultural productivity. As the current research is limited by inconsistent findings, often due to variations in experimental conditions, it is essential to study CeO2-NPs under more ecologically relevant settings. This review further emphasizes the need for future research to assess the long-term environmental impacts of CeO2-NPs in soil-plant systems and to develop guidelines for their responsible use in sustainable agriculture.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.