Concurrent inhibition of tumor growth and metastasis by a lipidated nanophotosensitizer tracing and disabling tumor extracellular vesicles.

IF 23.5 1区 医学 Q1 ONCOLOGY
Guifeng Miao, Zhanhao Shang, Xinyue Wang, Jibin Zhang, Mingheng Xu, Peiyi He, Qinjie Zhong, Xiaoxi Zhao, Guozhu Tan, Xiaorui Wang
{"title":"Concurrent inhibition of tumor growth and metastasis by a lipidated nanophotosensitizer tracing and disabling tumor extracellular vesicles.","authors":"Guifeng Miao, Zhanhao Shang, Xinyue Wang, Jibin Zhang, Mingheng Xu, Peiyi He, Qinjie Zhong, Xiaoxi Zhao, Guozhu Tan, Xiaorui Wang","doi":"10.1038/s43018-025-00997-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer cells promote tumor growth and metastasis through tumor extracellular vesicle (TEV)-mediated intercellular and intertissue communication. Inhibiting TEVs represents a promising strategy to suppress metastasis; however, effectively and selectively disabling TEVs remains challenging. Herein, we developed palmitic acid surface-displayed nanoparticles using an adjacent hydrophilic molecular engineering strategy. Unexpectedly, these lipidated nanoparticles were not only efficiently taken up and distributed within tumor cells but also coupled with TEV generation, enabling active tracing of TEVs. Exploiting their dual tumor spatial distribution (intracellular and intra-TEV), a lipidated nanophotosensitizer was constructed for metastasis therapy. Under near-infrared light irradiation at the primary tumor site, both intracellular and intra-TEV reactive oxygen species were generated synchronously. This led to photodynamic suppression of the primary tumor and blocked intercellular and intertissue communication by disabling TEVs, effectively inhibiting tumor growth and metastasis in multiple tumor models in female mice. Overall, this work reports a therapeutic paradigm for concurrently inhibiting tumor growth and metastasis.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":23.5000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-025-00997-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer cells promote tumor growth and metastasis through tumor extracellular vesicle (TEV)-mediated intercellular and intertissue communication. Inhibiting TEVs represents a promising strategy to suppress metastasis; however, effectively and selectively disabling TEVs remains challenging. Herein, we developed palmitic acid surface-displayed nanoparticles using an adjacent hydrophilic molecular engineering strategy. Unexpectedly, these lipidated nanoparticles were not only efficiently taken up and distributed within tumor cells but also coupled with TEV generation, enabling active tracing of TEVs. Exploiting their dual tumor spatial distribution (intracellular and intra-TEV), a lipidated nanophotosensitizer was constructed for metastasis therapy. Under near-infrared light irradiation at the primary tumor site, both intracellular and intra-TEV reactive oxygen species were generated synchronously. This led to photodynamic suppression of the primary tumor and blocked intercellular and intertissue communication by disabling TEVs, effectively inhibiting tumor growth and metastasis in multiple tumor models in female mice. Overall, this work reports a therapeutic paradigm for concurrently inhibiting tumor growth and metastasis.

脂化纳米光敏剂追踪和禁用肿瘤细胞外囊泡对肿瘤生长和转移的同时抑制。
癌细胞通过肿瘤细胞外囊泡(TEV)介导的细胞间和组织间通讯促进肿瘤生长和转移。抑制TEVs是一种很有希望的抑制转移的策略;然而,有效和有选择地禁用tev仍然具有挑战性。在此,我们利用邻近的亲水分子工程策略开发了棕榈酸表面显示的纳米颗粒。出乎意料的是,这些脂化纳米颗粒不仅在肿瘤细胞内被有效地吸收和分布,而且还与TEV的产生相结合,从而实现了TEV的主动追踪。利用肿瘤的双重空间分布(细胞内和tev内),构建脂化纳米光敏剂用于转移治疗。在原发肿瘤部位近红外光照射下,细胞内和tev内的活性氧同步产生。在雌性小鼠的多种肿瘤模型中,这导致原发肿瘤的光动力抑制,并通过禁用tev阻断细胞间和组织间的通讯,有效抑制肿瘤的生长和转移。总的来说,这项工作报告了一种同时抑制肿瘤生长和转移的治疗模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature cancer
Nature cancer Medicine-Oncology
CiteScore
31.10
自引率
1.80%
发文量
129
期刊介绍: Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates. Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale. In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信