Golam Rbbani, Prabhugouda Siriyappagouder, Riaz Murshed, Rajesh Joshi, Artem Nedoluzhko, Jorge Galindo-Villegas, Jorge M O Fernandes
{"title":"Optimization of Nile Tilapia Artificial Breeding Using Human Chorionic Gonadotropin (hCG) Hormone.","authors":"Golam Rbbani, Prabhugouda Siriyappagouder, Riaz Murshed, Rajesh Joshi, Artem Nedoluzhko, Jorge Galindo-Villegas, Jorge M O Fernandes","doi":"10.3390/mps8030057","DOIUrl":null,"url":null,"abstract":"<p><p>Nile tilapia (<i>Oreochromis niloticus</i>) is the most widely farmed tilapia species globally, making it one of the most important aquaculture species. To meet increasing demand, hatcheries occasionally use artificial breeding techniques such as hormonal induction to synchronize breeding. Despite the common use of human chorionic gonadotropin (hCG) in fish breeding, no detailed protocol has been established specifically for Nile tilapia. The objective of this study is to establish an effective hCG-induced artificial breeding protocol for gene editing and aquaculture production, optimizing fertilization, hatching, and survival rates. We employed a single intramuscular injection of 2 IU/g hCG to induce ovulation. The protocol achieved an average fertilization rate of 88.3% and a larval survival rate of 90.5%, demonstrating its potential for obtaining high-quality embryos for functional studies and enhancing reproductive performance on a commercial scale.</p>","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":"8 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195898/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps8030057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Nile tilapia (Oreochromis niloticus) is the most widely farmed tilapia species globally, making it one of the most important aquaculture species. To meet increasing demand, hatcheries occasionally use artificial breeding techniques such as hormonal induction to synchronize breeding. Despite the common use of human chorionic gonadotropin (hCG) in fish breeding, no detailed protocol has been established specifically for Nile tilapia. The objective of this study is to establish an effective hCG-induced artificial breeding protocol for gene editing and aquaculture production, optimizing fertilization, hatching, and survival rates. We employed a single intramuscular injection of 2 IU/g hCG to induce ovulation. The protocol achieved an average fertilization rate of 88.3% and a larval survival rate of 90.5%, demonstrating its potential for obtaining high-quality embryos for functional studies and enhancing reproductive performance on a commercial scale.