Jie Zong, Haiyang Wu, Xuan Hu, Ami Yao, Wenhua Zhu, Guifang Dou, Shuchen Liu, Xiaoxia Zhu, Ruolan Gu, Yunbo Sun, Zhuona Wu, Shanshan Wang, Hui Gan
{"title":"Plasma and Fecal Metabolites Combined with Gut Microbiome Reveal Systemic Metabolic Shifts in <sup>60</sup>Co Gamma-Irradiated Rats.","authors":"Jie Zong, Haiyang Wu, Xuan Hu, Ami Yao, Wenhua Zhu, Guifang Dou, Shuchen Liu, Xiaoxia Zhu, Ruolan Gu, Yunbo Sun, Zhuona Wu, Shanshan Wang, Hui Gan","doi":"10.3390/metabo15060363","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: High-dose γ-ray exposure (≥7 Gy) in nuclear emergencies induces life-threatening acute radiation syndrome, characterized by rapid hematopoietic collapse (leukocytes <0.5 × 10⁹/L) and gastrointestinal barrier failure. While clinical biomarkers like leukocyte depletion guide current therapies targeting myelosuppression, the concomitant metabolic disturbances and gut microbiota dysbiosis-critical determinants of delayed mortality-remain insufficiently profiled across the 28-day injury-recovery continuum. <b>Methods</b>: This study investigates the effects of <sup>60</sup>Co γ-ray irradiation on metabolic characteristics and gut microbiota in Sprague Dawley rats using untargeted metabolomics and 16S rRNA sequencing. Meanwhile, body weight and complete blood counts were measured. <b>Results</b>: Body weight exhibited significant fluctuations, with the most pronounced deviation observed at 14 days. Blood counts revealed a rapid decline in white blood cells, red blood cells, and platelets post-irradiation, reaching nadirs at 7-14 days, followed by gradual recovery to near-normal levels by 28 days. Untargeted metabolomics identified 32 upregulated and 33 downregulated plasma metabolites at 14 days post-irradiation, while fecal metabolites showed 47 upregulated and 18 downregulated species at 3 days. Key metabolic pathways impacted included Glycerophospholipid metabolism, alpha-linolenic acid metabolism, and biosynthesis of unsaturated fatty acids. Gut microbiota analysis demonstrated no significant change in α-diversity but significant <i>β</i>-diversity shifts (<i>p</i> < 0.05), indicating a marked alteration in the compositional structure of the intestinal microbial community following radiation exposure. Principal coordinate analysis confirmed distinct clustering between control and irradiated groups, with increased abundance of <i>Bacteroidota</i> and decreased <i>Firmicutes</i> in irradiated rats. These findings highlight dynamic metabolic and microbial disruptions post-irradiation, with recovery patterns suggesting a 28-day restoration cycle. Spearman's rank correlation analysis explored associations between the top 20 fecal metabolites and 50 abundant bacterial taxa. <i>Norank_f_Muribaculaceae</i>, <i>Prevotellaceae_UCG-001</i>, and <i>Bacteroides</i> showed significant correlations with various radiation-altered metabolites, highlighting metabolite-microbiota relationships post-radiation. <b>Conclusions</b>: This study provides insights into potential biomarkers for radiation-induced physiological damage and underscores the interplay between systemic metabolism and gut microbiota in radiation response.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194991/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15060363","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: High-dose γ-ray exposure (≥7 Gy) in nuclear emergencies induces life-threatening acute radiation syndrome, characterized by rapid hematopoietic collapse (leukocytes <0.5 × 10⁹/L) and gastrointestinal barrier failure. While clinical biomarkers like leukocyte depletion guide current therapies targeting myelosuppression, the concomitant metabolic disturbances and gut microbiota dysbiosis-critical determinants of delayed mortality-remain insufficiently profiled across the 28-day injury-recovery continuum. Methods: This study investigates the effects of 60Co γ-ray irradiation on metabolic characteristics and gut microbiota in Sprague Dawley rats using untargeted metabolomics and 16S rRNA sequencing. Meanwhile, body weight and complete blood counts were measured. Results: Body weight exhibited significant fluctuations, with the most pronounced deviation observed at 14 days. Blood counts revealed a rapid decline in white blood cells, red blood cells, and platelets post-irradiation, reaching nadirs at 7-14 days, followed by gradual recovery to near-normal levels by 28 days. Untargeted metabolomics identified 32 upregulated and 33 downregulated plasma metabolites at 14 days post-irradiation, while fecal metabolites showed 47 upregulated and 18 downregulated species at 3 days. Key metabolic pathways impacted included Glycerophospholipid metabolism, alpha-linolenic acid metabolism, and biosynthesis of unsaturated fatty acids. Gut microbiota analysis demonstrated no significant change in α-diversity but significant β-diversity shifts (p < 0.05), indicating a marked alteration in the compositional structure of the intestinal microbial community following radiation exposure. Principal coordinate analysis confirmed distinct clustering between control and irradiated groups, with increased abundance of Bacteroidota and decreased Firmicutes in irradiated rats. These findings highlight dynamic metabolic and microbial disruptions post-irradiation, with recovery patterns suggesting a 28-day restoration cycle. Spearman's rank correlation analysis explored associations between the top 20 fecal metabolites and 50 abundant bacterial taxa. Norank_f_Muribaculaceae, Prevotellaceae_UCG-001, and Bacteroides showed significant correlations with various radiation-altered metabolites, highlighting metabolite-microbiota relationships post-radiation. Conclusions: This study provides insights into potential biomarkers for radiation-induced physiological damage and underscores the interplay between systemic metabolism and gut microbiota in radiation response.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.