{"title":"Metabolomics Signatures of a Respiratory Tract Infection During an Altitude Training Camp in Elite Rowers.","authors":"Félix Boudry, Fabienne Durand, Corentine Goossens","doi":"10.3390/metabo15060408","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Respiratory pathologies, such as COVID-19 and bronchitis, pose significant challenges for high-level athletes, particularly during demanding altitude training camps. Metabolomics offers a promising approach for early detection of such pathologies, potentially minimizing their impact on performance. This study investigates the metabolic differences between athletes with and without respiratory illnesses during an altitude training camp using urine samples and multivariate analysis. <b>Methods</b>: Twenty-seven elite rowers (15 males, 12 females) participated in a 12-day altitude training camp at 1850 m. Urine samples were collected daily, with nine athletes developing respiratory pathologies (8 COVID-19, 1 bronchitis). Nuclear Magnetic Resonance spectroscopy was used to analyze the samples, followed by data processing with Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA), allowing to use Variable Importance in Projection (VIP) scores to identify key metabolites contributing to group separation. <b>Results</b>: The PLS-DA model for respiratory illness showed good performance (R<sup>2</sup> = 0.89, Q<sup>2</sup> = 0.35, <i>p</i> < 0.05). Models for altitude training achieved higher predictive power (Q<sup>2</sup> = 0.51 and 0.72, respectively). Metabolites kynurenine, <i>N</i>-methylnicotinamide, pyroglutamate, propionate, <i>N</i>-formyltryptophan, tryptophan and glucose were significantly highlighted in case of respiratory illness while trigonelline, 3-hydroxyphenylacetate, glutamate, creatine, citrate, urea, o-hydroxyhippurate, creatinine, hippurate and alanine were correlated to effort in altitude. This distinction confirms that respiratory illness induces a unique metabolic profile, clearly separable from hypoxia and training-induced adaptations. <b>Conclusions</b>: This study highlights the utility of metabolomics in identifying biomarkers of respiratory pathologies in athletes during altitude training, offering the potential for improved monitoring and intervention strategies. These findings could enhance athlete health management, reducing the impact of illness on performance during critical training periods. Further research with larger cohorts is warranted to confirm these results and explore targeted interventions.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195379/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15060408","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Respiratory pathologies, such as COVID-19 and bronchitis, pose significant challenges for high-level athletes, particularly during demanding altitude training camps. Metabolomics offers a promising approach for early detection of such pathologies, potentially minimizing their impact on performance. This study investigates the metabolic differences between athletes with and without respiratory illnesses during an altitude training camp using urine samples and multivariate analysis. Methods: Twenty-seven elite rowers (15 males, 12 females) participated in a 12-day altitude training camp at 1850 m. Urine samples were collected daily, with nine athletes developing respiratory pathologies (8 COVID-19, 1 bronchitis). Nuclear Magnetic Resonance spectroscopy was used to analyze the samples, followed by data processing with Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA), allowing to use Variable Importance in Projection (VIP) scores to identify key metabolites contributing to group separation. Results: The PLS-DA model for respiratory illness showed good performance (R2 = 0.89, Q2 = 0.35, p < 0.05). Models for altitude training achieved higher predictive power (Q2 = 0.51 and 0.72, respectively). Metabolites kynurenine, N-methylnicotinamide, pyroglutamate, propionate, N-formyltryptophan, tryptophan and glucose were significantly highlighted in case of respiratory illness while trigonelline, 3-hydroxyphenylacetate, glutamate, creatine, citrate, urea, o-hydroxyhippurate, creatinine, hippurate and alanine were correlated to effort in altitude. This distinction confirms that respiratory illness induces a unique metabolic profile, clearly separable from hypoxia and training-induced adaptations. Conclusions: This study highlights the utility of metabolomics in identifying biomarkers of respiratory pathologies in athletes during altitude training, offering the potential for improved monitoring and intervention strategies. These findings could enhance athlete health management, reducing the impact of illness on performance during critical training periods. Further research with larger cohorts is warranted to confirm these results and explore targeted interventions.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.