{"title":"Development of Sucrose-Utilizing <i>Escherichia coli</i> Nissle 1917 for Efficient Heparosan Biosynthesis.","authors":"Yaozong Chen, Zihua Wan, Zheng-Jun Li","doi":"10.3390/metabo15060410","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Heparosan is a component of the capsular polysaccharide in <i>Escherichia coli</i> K5 and <i>Pasteurella multocida</i> Type D. It shares a similar glycan structure with heparin and can be enzymatically modified to produce bioactive heparin. <b>Methods</b>: In this study, the probiotic strain <i>E. coli</i> Nissle 1917 (EcN), which naturally produces heparosan, was genetically engineered to utilize sucrose as a carbon source for growth while achieving high-yield heparosan biosynthesis. <b>Results</b>: By expressing the sucrose hydrolase genes <i>sacA</i> (from <i>Bacillus subtilis</i>) or <i>spI</i> (from <i>Bifidobacterium adolescentis</i>), EcN was enabled to utilize sucrose, achieving heparosan titers of 131 mg/L and 179 mg/L, respectively. Further metabolic engineering was performed to block the glycolytic and pentose phosphate pathways, thereby redirecting sucrose-derived glucose-6-phosphate and fructose-6-phosphate toward heparosan biosynthesis, while glycerol was supplemented as an auxiliary carbon source to support cell growth. Finally, the key biosynthesis genes <i>galU</i>, <i>kfiD</i>, and <i>glmM</i> were overexpressed, resulting in an engineered strain with a heparosan titer of 622 mg/L. <b>Conclusions</b>: This study represents the first successful engineering of EcN to utilize sucrose as the carbon source for growth, while achieving enhanced heparosan production through synergistic carbon source utilization. These findings establish a foundational strategy for employing this strain in the sucrose-based biosynthesis of other glycosaminoglycans.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194944/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15060410","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Heparosan is a component of the capsular polysaccharide in Escherichia coli K5 and Pasteurella multocida Type D. It shares a similar glycan structure with heparin and can be enzymatically modified to produce bioactive heparin. Methods: In this study, the probiotic strain E. coli Nissle 1917 (EcN), which naturally produces heparosan, was genetically engineered to utilize sucrose as a carbon source for growth while achieving high-yield heparosan biosynthesis. Results: By expressing the sucrose hydrolase genes sacA (from Bacillus subtilis) or spI (from Bifidobacterium adolescentis), EcN was enabled to utilize sucrose, achieving heparosan titers of 131 mg/L and 179 mg/L, respectively. Further metabolic engineering was performed to block the glycolytic and pentose phosphate pathways, thereby redirecting sucrose-derived glucose-6-phosphate and fructose-6-phosphate toward heparosan biosynthesis, while glycerol was supplemented as an auxiliary carbon source to support cell growth. Finally, the key biosynthesis genes galU, kfiD, and glmM were overexpressed, resulting in an engineered strain with a heparosan titer of 622 mg/L. Conclusions: This study represents the first successful engineering of EcN to utilize sucrose as the carbon source for growth, while achieving enhanced heparosan production through synergistic carbon source utilization. These findings establish a foundational strategy for employing this strain in the sucrose-based biosynthesis of other glycosaminoglycans.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.