{"title":"Experimental Investigation of Temperature Polarization near Membrane Surface During Air Gap Membrane Distillation Processes.","authors":"Lianqi Jing, Jiaqi Sun, Yaoling Zhang, Jiaming Chen, Fei Guo","doi":"10.3390/membranes15060185","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature polarization is a critical factor influencing the performance of membrane distillation. The presence of temperature polarization causes the temperature of the fluid near the membrane surface to be different from that in the bulk region, reducing the effective temperature difference across the membrane and thus diminishing the transmembrane mass transfer driving force. This study investigates the monitoring of temperature polarization and its effects on the transmembrane mass transfer performance in a typical air gap membrane distillation system. A set of thermocouples within a feed module were employed to monitor and capture the development of the temperature polarization profile. The test results reveal that temperature polarization reduces the effective temperature difference across the membrane, leading to a certain difference between the theoretical estimation and experimental values of the mass transfer coefficient across the porous membrane. To address this issue, the temperature polarization factor was further analyzed as a metric to quantify the impact of temperature polarization on the transmembrane flux in membrane distillation, with a detailed discussion of its range and implications.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 6","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195244/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15060185","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Temperature polarization is a critical factor influencing the performance of membrane distillation. The presence of temperature polarization causes the temperature of the fluid near the membrane surface to be different from that in the bulk region, reducing the effective temperature difference across the membrane and thus diminishing the transmembrane mass transfer driving force. This study investigates the monitoring of temperature polarization and its effects on the transmembrane mass transfer performance in a typical air gap membrane distillation system. A set of thermocouples within a feed module were employed to monitor and capture the development of the temperature polarization profile. The test results reveal that temperature polarization reduces the effective temperature difference across the membrane, leading to a certain difference between the theoretical estimation and experimental values of the mass transfer coefficient across the porous membrane. To address this issue, the temperature polarization factor was further analyzed as a metric to quantify the impact of temperature polarization on the transmembrane flux in membrane distillation, with a detailed discussion of its range and implications.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.