W Henry Freer, Charles Perks, Charles Codner, Paul A Kohl
{"title":"Electrodialysis Using Zero-Gap Electrodes Producing Concentrated Product Without Significant Solution Resistance Losses.","authors":"W Henry Freer, Charles Perks, Charles Codner, Paul A Kohl","doi":"10.3390/membranes15060186","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical separations use an ionic current to drive the flow of ions across an ion exchange membrane to produce dilute and concentrated streams. The economics of these systems is challenging because passing an ionic current through a dilute solution often requires a small cell gap to lower the ionic resistance and the use of a low current density to minimize the voltage drop across the dilute product stream. Lower salt concentration in the product stream improves the fraction of the salt recovered but increases the electricity cost due to high ohmic losses. The electricity cost is managed by lowering the current density which greatly increases the balance of the plant. The cell configuration demonstrated in this study eliminates the need to pass an ionic current through the diluted product stream. Ionic current passes only through the concentrated product stream, which allows use of high current density and smaller balance of the plant. The cell has three chambers with an anion and cation membrane separating the cathode and anode, respectively, from the concentrated product solution. The device uses zero-gap membrane electrode assemblies to improve the cell voltage and system performance. As ions concentrate in the center compartment, the solution resistance decreases, and the product is recovered with a lower voltage penalty compared to traditional electrodialysis. This lower voltage drop allows for faster feed flow rates and higher current density. Additionally, the larger cell gap for the product provides opportunities for systems with solids suspended in solution. It was found that the ion collection efficiency increased with current due to enhanced convective mass transfer in the feed streams.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 6","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195103/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15060186","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical separations use an ionic current to drive the flow of ions across an ion exchange membrane to produce dilute and concentrated streams. The economics of these systems is challenging because passing an ionic current through a dilute solution often requires a small cell gap to lower the ionic resistance and the use of a low current density to minimize the voltage drop across the dilute product stream. Lower salt concentration in the product stream improves the fraction of the salt recovered but increases the electricity cost due to high ohmic losses. The electricity cost is managed by lowering the current density which greatly increases the balance of the plant. The cell configuration demonstrated in this study eliminates the need to pass an ionic current through the diluted product stream. Ionic current passes only through the concentrated product stream, which allows use of high current density and smaller balance of the plant. The cell has three chambers with an anion and cation membrane separating the cathode and anode, respectively, from the concentrated product solution. The device uses zero-gap membrane electrode assemblies to improve the cell voltage and system performance. As ions concentrate in the center compartment, the solution resistance decreases, and the product is recovered with a lower voltage penalty compared to traditional electrodialysis. This lower voltage drop allows for faster feed flow rates and higher current density. Additionally, the larger cell gap for the product provides opportunities for systems with solids suspended in solution. It was found that the ion collection efficiency increased with current due to enhanced convective mass transfer in the feed streams.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.