{"title":"Exploring the Catalytic Mechanisms of a Newly Identified Salt-Activated Alginate Lyase from <i>Pseudoalteromonas carrageenovora</i> ASY5.","authors":"Xiaoyan Zhuang, Chao Jiao, Zewang Guo, Qiong Xiao, Jun Chen, Fuquan Chen, Qiuming Yang, Yi Ru, Huifen Weng, Siyuan Wang, Anfeng Xiao, Yonghui Zhang","doi":"10.3390/md23060254","DOIUrl":null,"url":null,"abstract":"<p><p>Alginate lyases are critical enzymes in hydrolyzing alginate into alginate oligosaccharides (AOS), which are bioactive compounds known for their antioxidant properties and ability to lower serum glucose and lipid concentrations. However, elucidating catalytic mechanisms and discovering enzymes with enhanced catalytic efficiency remain long-term challenges. Here, we report AlgL2491, a novel bifunctional and cold-adapted alginate lyase from <i>Pseudoalteromonas carrageenovora</i> ASY5, belonging to the polysaccharide lyase family 18. This enzyme uniquely cleaves both polyguluronic (polyG) and polymannuronic (polyM), predominantly releasing disaccharides, trisaccharides, and tetrasaccharides after 12 h of hydrolysis. The enzyme achieves peak catalytic efficiency at 35 °C and pH 7.5, with activity increasing 5.5-fold in 0.5 M of NaCl. Molecular dynamics simulations demonstrate that salt ions enhance structural stability by minimizing conformational fluctuations and strengthening interdomain interactions, providing mechanistic insights into its salt-activated behavior. The alginate oligosaccharides (AOS) exhibit excellent free radical-scavenging activities of 86.79 ± 0.31%, 83.42 ± 0.18%, and 71.28 ± 2.27% toward hydroxyl, ABTS, and DPPH radicals, with IC50 values of 8.8, 6.74, and 9.71 mg/mL, respectively. These findings not only reveal the salt-activation mechanism of AlgL2491 and highlight the potential value of its hydrolysate in antioxidant activity but also provide a sustainable industrial solution in industrial-scale AOS production directly from marine biomass, eliminating the need for energy-intensive desalination of alginate, which may inform future biocatalyst design for marine polysaccharide valorization.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 6","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193947/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23060254","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Alginate lyases are critical enzymes in hydrolyzing alginate into alginate oligosaccharides (AOS), which are bioactive compounds known for their antioxidant properties and ability to lower serum glucose and lipid concentrations. However, elucidating catalytic mechanisms and discovering enzymes with enhanced catalytic efficiency remain long-term challenges. Here, we report AlgL2491, a novel bifunctional and cold-adapted alginate lyase from Pseudoalteromonas carrageenovora ASY5, belonging to the polysaccharide lyase family 18. This enzyme uniquely cleaves both polyguluronic (polyG) and polymannuronic (polyM), predominantly releasing disaccharides, trisaccharides, and tetrasaccharides after 12 h of hydrolysis. The enzyme achieves peak catalytic efficiency at 35 °C and pH 7.5, with activity increasing 5.5-fold in 0.5 M of NaCl. Molecular dynamics simulations demonstrate that salt ions enhance structural stability by minimizing conformational fluctuations and strengthening interdomain interactions, providing mechanistic insights into its salt-activated behavior. The alginate oligosaccharides (AOS) exhibit excellent free radical-scavenging activities of 86.79 ± 0.31%, 83.42 ± 0.18%, and 71.28 ± 2.27% toward hydroxyl, ABTS, and DPPH radicals, with IC50 values of 8.8, 6.74, and 9.71 mg/mL, respectively. These findings not only reveal the salt-activation mechanism of AlgL2491 and highlight the potential value of its hydrolysate in antioxidant activity but also provide a sustainable industrial solution in industrial-scale AOS production directly from marine biomass, eliminating the need for energy-intensive desalination of alginate, which may inform future biocatalyst design for marine polysaccharide valorization.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.