Eddy Shan, Cristina Chamorro, Ana Ferrández-Montero, Rosa M Martin-Rodriguez, Begoña Ferrari, Antonio Javier Sanchez-Herencia, Leire Virto, María José Marín, Elena Figuero, Mariano Sanz
{"title":"In Vitro Biological Properties Assessment of 3D-Printed Hydroxyapatite-Polylactic Acid Scaffolds Intended for Bone Regeneration.","authors":"Eddy Shan, Cristina Chamorro, Ana Ferrández-Montero, Rosa M Martin-Rodriguez, Begoña Ferrari, Antonio Javier Sanchez-Herencia, Leire Virto, María José Marín, Elena Figuero, Mariano Sanz","doi":"10.3390/jfb16060218","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the biological performance in vitro of two 3D-printed hydroxyapatite (HA) and polylactic acid (PLA) composite scaffolds with two different infill densities (50% [HA-PLA50] and 70% [HA-PLA70]). Comparative analysis using MG-63 cell cultures evaluated the following: (1) integrity after exposure to various sterilization methods; (2) cell viability; (3) morphological characteristics; (4) cell proliferation; (5) cytotoxicity; (6) gene expression; and (7) protein synthesis. Ultraviolet radiation was the preferred sterilization method. Both scaffolds maintained adequate cell viability and proliferation over 7 days without significant differences in cytotoxicity. Notably, HA-PLA50 scaffolds demonstrated superior osteogenic potential, showing a significantly higher expression of collagen type I (COL1A1) and an increased synthesis of interleukins 6 and 8 (IL-6, IL-8) compared to HA-PLA70 scaffolds. While both scaffold types supported robust cell growth, the HA-PLA50 formulation exhibited enhanced bioactivity, suggesting a potential advantage for bone tissue engineering applications. These findings provide important insights for optimizing 3D-printed bone graft substitutes.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 6","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194503/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16060218","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluated the biological performance in vitro of two 3D-printed hydroxyapatite (HA) and polylactic acid (PLA) composite scaffolds with two different infill densities (50% [HA-PLA50] and 70% [HA-PLA70]). Comparative analysis using MG-63 cell cultures evaluated the following: (1) integrity after exposure to various sterilization methods; (2) cell viability; (3) morphological characteristics; (4) cell proliferation; (5) cytotoxicity; (6) gene expression; and (7) protein synthesis. Ultraviolet radiation was the preferred sterilization method. Both scaffolds maintained adequate cell viability and proliferation over 7 days without significant differences in cytotoxicity. Notably, HA-PLA50 scaffolds demonstrated superior osteogenic potential, showing a significantly higher expression of collagen type I (COL1A1) and an increased synthesis of interleukins 6 and 8 (IL-6, IL-8) compared to HA-PLA70 scaffolds. While both scaffold types supported robust cell growth, the HA-PLA50 formulation exhibited enhanced bioactivity, suggesting a potential advantage for bone tissue engineering applications. These findings provide important insights for optimizing 3D-printed bone graft substitutes.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.