Applications of Osteoimmunomodulation Models in Evaluating Osteogenic Biomaterials.

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Yuhan Wang, Yuzhu He, Yaran Zang, Zijiao Zhang, Guangyao Li, Wenqi Fu, Guowu Ma
{"title":"Applications of Osteoimmunomodulation Models in Evaluating Osteogenic Biomaterials.","authors":"Yuhan Wang, Yuzhu He, Yaran Zang, Zijiao Zhang, Guangyao Li, Wenqi Fu, Guowu Ma","doi":"10.3390/jfb16060217","DOIUrl":null,"url":null,"abstract":"<p><p>The development of osteogenic biomaterials relies on updates in research methodologies. Establishing reasonable modes is the basis for obtaining reliable experimental conclusions. With the advancement in bone immunology, osteoimmunomodulatory properties have become one of the crucial indexes for evaluating osteogenic biomaterials. Summarizing the current models of bone immunomodulation is beneficial for optimizing experimental protocols and promoting the clinical application of osteogenic biomaterials. In this review, we introduced the crosstalk between the skeletal system and the immune system, in particular, the roles of different immune cells in the process of bone regeneration. Moreover, the mechanisms of osteogenic biomaterials in regulating the osteoimmune microenvironment were analyzed, followed by summarizing the benefits and limitations of current osteoimmunomodulation models in evaluating osteogenic biomaterials. Finally, we discussed the expected future directions of the applications of osteoimmunomodulation models.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 6","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194544/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16060217","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of osteogenic biomaterials relies on updates in research methodologies. Establishing reasonable modes is the basis for obtaining reliable experimental conclusions. With the advancement in bone immunology, osteoimmunomodulatory properties have become one of the crucial indexes for evaluating osteogenic biomaterials. Summarizing the current models of bone immunomodulation is beneficial for optimizing experimental protocols and promoting the clinical application of osteogenic biomaterials. In this review, we introduced the crosstalk between the skeletal system and the immune system, in particular, the roles of different immune cells in the process of bone regeneration. Moreover, the mechanisms of osteogenic biomaterials in regulating the osteoimmune microenvironment were analyzed, followed by summarizing the benefits and limitations of current osteoimmunomodulation models in evaluating osteogenic biomaterials. Finally, we discussed the expected future directions of the applications of osteoimmunomodulation models.

骨免疫调节模型在成骨生物材料评价中的应用。
成骨生物材料的发展依赖于研究方法的更新。建立合理的模型是获得可靠实验结论的基础。随着骨免疫学研究的进展,骨免疫调节性能已成为评价成骨生物材料的重要指标之一。总结目前骨免疫调节的模型,有助于优化实验方案,促进成骨生物材料的临床应用。本文介绍了骨骼系统和免疫系统之间的相互作用,特别是不同免疫细胞在骨再生过程中的作用。分析了成骨生物材料调节骨免疫微环境的机制,总结了现有的骨免疫调节模型在评价成骨生物材料方面的优势和局限性。最后,我们讨论了骨免疫调节模型的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信