Engineering of Global Transcriptional Regulators (GTRs) in Aspergillus for Natural Product Discovery.

IF 4.2 2区 生物学 Q2 MICROBIOLOGY
Yujie Zhao, Qing Gong, Huawei Zhang
{"title":"Engineering of Global Transcriptional Regulators (GTRs) in <i>Aspergillus</i> for Natural Product Discovery.","authors":"Yujie Zhao, Qing Gong, Huawei Zhang","doi":"10.3390/jof11060449","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>Aspergillus</i> genus is an important group of filamentous fungi, and the various biological activities of its secondary metabolites (SMs) have great biosynthetic potential. Despite over 4200 SMs having been isolated from <i>Aspergillus</i> spp., their metabolic potential remains unexplored due to the presence of numerous silent biosynthetic gene clusters (BGCs) in their genomes. Fortunately, over the last two decades, the global transcriptional regulator (GTR) engineering strategy has emerged as a powerful tool for activating these cryptic BGCs in order to synthesize previously undiscovered SMs from <i>Aspergillus</i> spp. This review highlights recent advances in fungal GTR engineering techniques, the regulatory mechanisms of GTRs, and current challenges and future perspectives for their application in natural product discovery in the genus <i>Aspergillus</i>.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193740/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11060449","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Aspergillus genus is an important group of filamentous fungi, and the various biological activities of its secondary metabolites (SMs) have great biosynthetic potential. Despite over 4200 SMs having been isolated from Aspergillus spp., their metabolic potential remains unexplored due to the presence of numerous silent biosynthetic gene clusters (BGCs) in their genomes. Fortunately, over the last two decades, the global transcriptional regulator (GTR) engineering strategy has emerged as a powerful tool for activating these cryptic BGCs in order to synthesize previously undiscovered SMs from Aspergillus spp. This review highlights recent advances in fungal GTR engineering techniques, the regulatory mechanisms of GTRs, and current challenges and future perspectives for their application in natural product discovery in the genus Aspergillus.

曲霉中用于天然产物发现的全局转录调控因子(GTRs)工程。
曲霉属是丝状真菌的重要类群,其次生代谢产物(SMs)的各种生物活性具有很大的生物合成潜力。尽管已经从曲霉中分离出超过4200个SMs,但由于其基因组中存在许多沉默的生物合成基因簇(BGCs),因此其代谢潜力尚未得到开发。幸运的是,在过去的二十年中,全球转录调控(GTR)工程策略已经成为激活这些隐式bgc以从曲霉中合成以前未发现的SMs的强大工具。本文重点介绍了真菌GTR工程技术的最新进展,GTR的调控机制,以及当前的挑战和未来的展望,这些技术在曲霉属天然产物发现中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fungi
Journal of Fungi Medicine-Microbiology (medical)
CiteScore
6.70
自引率
14.90%
发文量
1151
审稿时长
11 weeks
期刊介绍: Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信