Gergely Imre Kovács, László Hidi, Evelin Forró, Dóra Haluszka, Dániel Sándor Veres, Gergő Péter Gyurok, Andrea Kőszegi, Attila Fintha, Miklós Kellermayer, Péter Sótonyi
{"title":"Multi-Scale Mechanics of Cryopreserved Human Arterial Allografts Across a Six-Month Period.","authors":"Gergely Imre Kovács, László Hidi, Evelin Forró, Dóra Haluszka, Dániel Sándor Veres, Gergő Péter Gyurok, Andrea Kőszegi, Attila Fintha, Miklós Kellermayer, Péter Sótonyi","doi":"10.3390/jfb16060198","DOIUrl":null,"url":null,"abstract":"<p><p>Operating under septic conditions poses significant challenges in vascular surgery. Infection is a serious risk when handling synthetic vessel prostheses and is one of the most dreaded complications. In the event of graft infection, an infection-resistant alternative is necessary. Cryopreserved vascular allografts offer a suitable alternative to replace an infected vessel or a section of a synthetic graft. However, there are no international guidelines for the preparation, storage, and thawing of such vessel grafts. Here, we aimed to investigate the mechanical properties of human cryopreserved arteries across multiple scales, ranging from nanonewton to newton forces and identify the optimal cryogenic storage duration. Human arterial allograft samples were frozen in a slow, controlled process and stored at -80 °C. One native and four cryopreserved samples were examined during a six-month-long period. Dimethyl-sulphoxide was used as a cryoprotectant. The mechanical properties of fresh and stored samples were explored in uniaxial ring tests and nanoindentation. We found no significant changes in the multi-scale mechanical properties during the examination period. Our results indicate that the cryopreserved vascular allografts are mechanically stable for up to six months under cryogenic conditions; hence, they represent ideal samples in vascular surgery.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 6","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194050/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16060198","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Operating under septic conditions poses significant challenges in vascular surgery. Infection is a serious risk when handling synthetic vessel prostheses and is one of the most dreaded complications. In the event of graft infection, an infection-resistant alternative is necessary. Cryopreserved vascular allografts offer a suitable alternative to replace an infected vessel or a section of a synthetic graft. However, there are no international guidelines for the preparation, storage, and thawing of such vessel grafts. Here, we aimed to investigate the mechanical properties of human cryopreserved arteries across multiple scales, ranging from nanonewton to newton forces and identify the optimal cryogenic storage duration. Human arterial allograft samples were frozen in a slow, controlled process and stored at -80 °C. One native and four cryopreserved samples were examined during a six-month-long period. Dimethyl-sulphoxide was used as a cryoprotectant. The mechanical properties of fresh and stored samples were explored in uniaxial ring tests and nanoindentation. We found no significant changes in the multi-scale mechanical properties during the examination period. Our results indicate that the cryopreserved vascular allografts are mechanically stable for up to six months under cryogenic conditions; hence, they represent ideal samples in vascular surgery.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.