Jay Bharatsingh Bisen, Hayden Sikora, Anushree Aneja, Sanjiv J Shah, Rukhsana G Mirza
{"title":"Retinal Imaging as a Window into Cardiovascular Health: Towards Harnessing Retinal Analytics for Precision Cardiovascular Medicine.","authors":"Jay Bharatsingh Bisen, Hayden Sikora, Anushree Aneja, Sanjiv J Shah, Rukhsana G Mirza","doi":"10.3390/jcdd12060230","DOIUrl":null,"url":null,"abstract":"<p><p>Rising morbidity and mortality from cardiovascular disease (CVD) have increased interest in precision and preventive management to reduce long-term sequelae. While retinal imaging has traditionally been recognized for identifying vascular changes in systemic conditions such as hypertension and type 2 diabetes mellitus, a new ophthalmologic field, cardiac-oculomics, has associated retinal biomarker changes with other cardiovascular diseases with retinal manifestations. Several imaging modalities visualize the retina, including color fundus photography (CFP), optical coherence tomography (OCT), and OCT angiography (OCTA), which visualize the retinal surface, the individual retinal layers, and the microvasculature within those layers, respectively. In these modalities, imaging-derived biomarkers can present due to CVD and have been linked to the presence, progression, or risk of developing a range of CVD, including hypertension, carotid artery disease, valvular heart disease, cerebral infarction, atrial fibrillation, and heart failure. Promising artificial intelligence (AI) models have been developed to complement existing risk-prediction tools, but standardization and clinical trials are needed for clinical adoption. Beyond risk estimation, there is growing interest in assessing real-time cardiovascular status to track vascular changes following pharmacotherapy, surgery, or acute decompensation. This review offers an up-to-date assessment of the cardiac-oculomics literature and aims to raise awareness among cardiologists and encourage interdepartmental collaboration.</p>","PeriodicalId":15197,"journal":{"name":"Journal of Cardiovascular Development and Disease","volume":"12 6","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194434/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Development and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcdd12060230","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Rising morbidity and mortality from cardiovascular disease (CVD) have increased interest in precision and preventive management to reduce long-term sequelae. While retinal imaging has traditionally been recognized for identifying vascular changes in systemic conditions such as hypertension and type 2 diabetes mellitus, a new ophthalmologic field, cardiac-oculomics, has associated retinal biomarker changes with other cardiovascular diseases with retinal manifestations. Several imaging modalities visualize the retina, including color fundus photography (CFP), optical coherence tomography (OCT), and OCT angiography (OCTA), which visualize the retinal surface, the individual retinal layers, and the microvasculature within those layers, respectively. In these modalities, imaging-derived biomarkers can present due to CVD and have been linked to the presence, progression, or risk of developing a range of CVD, including hypertension, carotid artery disease, valvular heart disease, cerebral infarction, atrial fibrillation, and heart failure. Promising artificial intelligence (AI) models have been developed to complement existing risk-prediction tools, but standardization and clinical trials are needed for clinical adoption. Beyond risk estimation, there is growing interest in assessing real-time cardiovascular status to track vascular changes following pharmacotherapy, surgery, or acute decompensation. This review offers an up-to-date assessment of the cardiac-oculomics literature and aims to raise awareness among cardiologists and encourage interdepartmental collaboration.