{"title":"Cobalt tolerant bacteria mobilize iron in garden pea (<i>Pisum sativum</i> L.) to mitigate cobalt stress in iron deficit soils.","authors":"Sapna Chandwani, Vaibhavi Ahire, Salim Manoharadas, Natarajan Amaresan","doi":"10.1080/15226514.2025.2522304","DOIUrl":null,"url":null,"abstract":"<p><p>Excess cobalt (Co) in plants induces oxidative stress and competes with iron (Fe), leading to Fe deficiency, leaf loss, and reduced chlorophyll content. Although Co is essential for some lower and leguminous plants, its toxicity hampers growth. In this study, seven previously isolated siderophore and 1-aminocyclopropane-1-carboxylate deaminase (ACCD) bacteria possessing PGP properties such as indole-3-acetic acid like substances production, and phosphate solubilization were screened for Co-tolerance. Pot study (2000 ppm Co stress) revealed enhanced root (108.10%-297.89%) and shoot length (28.99%-118.01%), and increased uptake of nitrogen (35.36-41.36 mg g<sup>-1</sup>), phosphorous (3.54-4.21 mg g<sup>-1</sup>), Co (3.09-5.2 µg g<sup>-1</sup>) and Fe (34.08-41.02 µg g<sup>-1</sup>), and chlorophyll (13.19-42.97 mg g<sup>-1</sup>). Furthermore, inoculation of bacteria also significantly enhanced the soil siderophore units (96.21%-262.01%), ACCD production (1.74-4.99 µmol mL<sup>-1</sup>) and the soil respiration activity such as fluorescein diacetate hydrolysis (11.33-48.57 µg g<sup>-1</sup>), dehydrogenase enzyme (99.26-197.32 µg g<sup>-1</sup>) and alkaline phosphatase (418.20-918.20 µg g<sup>-1</sup>). In conclusion, strains IMN 4 (<i>Delftia</i> sp.) and SBTS 12 (<i>Rhodococcus</i> sp.) can be used to alleviate Co-stress <i>via</i> mobilizing Co and Fe in plants grown in Fe limited soils.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-13"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2522304","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Excess cobalt (Co) in plants induces oxidative stress and competes with iron (Fe), leading to Fe deficiency, leaf loss, and reduced chlorophyll content. Although Co is essential for some lower and leguminous plants, its toxicity hampers growth. In this study, seven previously isolated siderophore and 1-aminocyclopropane-1-carboxylate deaminase (ACCD) bacteria possessing PGP properties such as indole-3-acetic acid like substances production, and phosphate solubilization were screened for Co-tolerance. Pot study (2000 ppm Co stress) revealed enhanced root (108.10%-297.89%) and shoot length (28.99%-118.01%), and increased uptake of nitrogen (35.36-41.36 mg g-1), phosphorous (3.54-4.21 mg g-1), Co (3.09-5.2 µg g-1) and Fe (34.08-41.02 µg g-1), and chlorophyll (13.19-42.97 mg g-1). Furthermore, inoculation of bacteria also significantly enhanced the soil siderophore units (96.21%-262.01%), ACCD production (1.74-4.99 µmol mL-1) and the soil respiration activity such as fluorescein diacetate hydrolysis (11.33-48.57 µg g-1), dehydrogenase enzyme (99.26-197.32 µg g-1) and alkaline phosphatase (418.20-918.20 µg g-1). In conclusion, strains IMN 4 (Delftia sp.) and SBTS 12 (Rhodococcus sp.) can be used to alleviate Co-stress via mobilizing Co and Fe in plants grown in Fe limited soils.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.