{"title":"Transcriptomic Analysis of Venom Secretion in <i>Achelura yunnanensis</i>: Lipid Metabolism, Redox Reactions, and Structural Adaptations.","authors":"Ping Liu, Hui-Qin Zhu, Si-Ming Wang, Yu-Qian Wang, Zhen-Yuan Ruan, Lu Qiao, Xing-Xing Wu, Qing-Hua Yan, Ya-Ping Lu, Bing Bai, Wei-Feng Ding","doi":"10.3390/insects16060588","DOIUrl":null,"url":null,"abstract":"<p><p>As a key pest damaging urban greenery in Yunnan, China, <i>Achelura yunnanensis</i> larvae secrete venom for defense, yet the molecular basis of this process remains poorly understood. This study aimed to uncover the molecular mechanisms of venom secretion by comparing the dorsal epidermis tissue (LDET) with the larval proleg tissue (LP). We performed transcriptomic analysis using RNA sequencing to identify differentially expressed genes between LDET and LP (10 biological replicates per tissue type), followed by functional enrichment and gene expression correlation analyses to explore tissue-specific characteristics. LDET exhibited significant upregulation of pathways related to lipid metabolism, redox reactions, and surface protective structure formation, suggesting their roles in venom stabilization, activation, and safe secretion. Conversely, genes linked to non-venom-related functions, such as extracellular matrix organization and epidermal development, were downregulated in LDET, indicating resource reallocation toward venom production. These findings reveal a multi-component mechanism in LDET that supports venom secretion through metabolic and structural adaptations, with lipid metabolism genes constituting 18.3% of total differentially expressed genes, highlighting evolutionary trade-offs in insect defense. This study provides new insights into insect venom secretion and offers potential targets for pest control strategies.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193299/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16060588","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As a key pest damaging urban greenery in Yunnan, China, Achelura yunnanensis larvae secrete venom for defense, yet the molecular basis of this process remains poorly understood. This study aimed to uncover the molecular mechanisms of venom secretion by comparing the dorsal epidermis tissue (LDET) with the larval proleg tissue (LP). We performed transcriptomic analysis using RNA sequencing to identify differentially expressed genes between LDET and LP (10 biological replicates per tissue type), followed by functional enrichment and gene expression correlation analyses to explore tissue-specific characteristics. LDET exhibited significant upregulation of pathways related to lipid metabolism, redox reactions, and surface protective structure formation, suggesting their roles in venom stabilization, activation, and safe secretion. Conversely, genes linked to non-venom-related functions, such as extracellular matrix organization and epidermal development, were downregulated in LDET, indicating resource reallocation toward venom production. These findings reveal a multi-component mechanism in LDET that supports venom secretion through metabolic and structural adaptations, with lipid metabolism genes constituting 18.3% of total differentially expressed genes, highlighting evolutionary trade-offs in insect defense. This study provides new insights into insect venom secretion and offers potential targets for pest control strategies.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.