Trey Mathews, Ella Joyce, Charles I Abramson, Harrington Wells, Robert J Sheaff
{"title":"The Essential Oil Component Terpinyl Acetate Alters Honey Bee Energy Levels and Foraging Behavior.","authors":"Trey Mathews, Ella Joyce, Charles I Abramson, Harrington Wells, Robert J Sheaff","doi":"10.3390/insects16060561","DOIUrl":null,"url":null,"abstract":"<p><p>Essential oils have been utilized in the health, learning/memory, and agricultural fields, but not much is known about the biological activity of their individual components. Terpinyl acetate is a p-menthane monoterpenoid commonly found in cardamom, pine, cajeput, pine needle, and other essential oils. Using a cell culture model system, we found that terpinyl acetate is a potent and specific inhibitor of mitochondrial ATP production, suggesting it might function as a plant toxin. Remarkably, however, terpinyl acetate was not cytotoxic because cells switched to glycolysis to maintain ATP levels. Based on these findings, we hypothesized that terpinyl acetate might be employed to benefit plant survival by modulating metabolism/behavior of plant pollinators such as the honey bee. This hypothesis was tested by investigating terpinyl acetate's effect on honey bee foraging. Free-flying honey bee flower color choice was recorded when visiting a blue-white dimorphic artificial flower patch of 36 flowers. The nectar-reward difference between flower colors was varied in a manner in which both learning and reversal learning could be measured. Terpinyl acetate ingestion disrupted reversal learning but not initial learning: this change caused bees to remain faithful to a flower color longer than was energetically optimal.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16060561","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Essential oils have been utilized in the health, learning/memory, and agricultural fields, but not much is known about the biological activity of their individual components. Terpinyl acetate is a p-menthane monoterpenoid commonly found in cardamom, pine, cajeput, pine needle, and other essential oils. Using a cell culture model system, we found that terpinyl acetate is a potent and specific inhibitor of mitochondrial ATP production, suggesting it might function as a plant toxin. Remarkably, however, terpinyl acetate was not cytotoxic because cells switched to glycolysis to maintain ATP levels. Based on these findings, we hypothesized that terpinyl acetate might be employed to benefit plant survival by modulating metabolism/behavior of plant pollinators such as the honey bee. This hypothesis was tested by investigating terpinyl acetate's effect on honey bee foraging. Free-flying honey bee flower color choice was recorded when visiting a blue-white dimorphic artificial flower patch of 36 flowers. The nectar-reward difference between flower colors was varied in a manner in which both learning and reversal learning could be measured. Terpinyl acetate ingestion disrupted reversal learning but not initial learning: this change caused bees to remain faithful to a flower color longer than was energetically optimal.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.