Functional Differentiation Reconfiguration in the Midgut of Nezara viridula (Hemiptera: Pentatomidae) Based on Transcriptomics: Multilayer Enrichment Analysis and Topological Network Interpretation.
{"title":"Functional Differentiation Reconfiguration in the Midgut of <i>Nezara viridula</i> (Hemiptera: Pentatomidae) Based on Transcriptomics: Multilayer Enrichment Analysis and Topological Network Interpretation.","authors":"Dongyue Yu, Jingyu Liang, Wenjun Bu","doi":"10.3390/insects16060634","DOIUrl":null,"url":null,"abstract":"<p><p>The present investigation systematically elucidates the distinct functional specialization within the M1-M3 midgut sections of the significant agricultural pest, <i>Nezara viridula</i>. Employing an integrated transcriptomic analysis, three pivotal discoveries were achieved: (1) each midgut segment possesses unique gene expression signatures; (2) metabolic and signal transduction pathways exhibit coordinated regulatory patterns; and (3) parallel expression changes occur between neuroreceptor (e.g., <i>TACR</i>/<i>HTR</i>) and metabolic enzyme (e.g., <i>GLA</i>/<i>NAGA</i>) genes within identical midgut segments. These data reveal that the M1 region is primarily enriched in metabolic processes and neural signaling; the M2 region emphasizes cellular junctions and immune responses, while the M3 region is mainly responsible for cellular senescence and renewal. These discoveries advance the understanding of feeding adaptation mechanisms in Hemipteran insects and propose a \"metabolism-defense-regeneration\" functional model for the midgut. The established multi-level analytical framework provides a robust methodology for subsequent dissection of complex biological systems, identification of key molecular targets for functional validation, and for the development of novel pest control strategies.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193252/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16060634","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present investigation systematically elucidates the distinct functional specialization within the M1-M3 midgut sections of the significant agricultural pest, Nezara viridula. Employing an integrated transcriptomic analysis, three pivotal discoveries were achieved: (1) each midgut segment possesses unique gene expression signatures; (2) metabolic and signal transduction pathways exhibit coordinated regulatory patterns; and (3) parallel expression changes occur between neuroreceptor (e.g., TACR/HTR) and metabolic enzyme (e.g., GLA/NAGA) genes within identical midgut segments. These data reveal that the M1 region is primarily enriched in metabolic processes and neural signaling; the M2 region emphasizes cellular junctions and immune responses, while the M3 region is mainly responsible for cellular senescence and renewal. These discoveries advance the understanding of feeding adaptation mechanisms in Hemipteran insects and propose a "metabolism-defense-regeneration" functional model for the midgut. The established multi-level analytical framework provides a robust methodology for subsequent dissection of complex biological systems, identification of key molecular targets for functional validation, and for the development of novel pest control strategies.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.