Sean D Moore, Tamryn Marsberg, Mellissa Peyper, Luke Cousins, Marcel van der Merwe, Guy Sutton, Sonnica van Niekerk, Vaughan Hattingh
{"title":"Development and Evaluation of Preharvest <i>Thaumatotibia leucotreta</i> Citrus Fruit Infestation Monitoring for Inclusion in a Systems Approach.","authors":"Sean D Moore, Tamryn Marsberg, Mellissa Peyper, Luke Cousins, Marcel van der Merwe, Guy Sutton, Sonnica van Niekerk, Vaughan Hattingh","doi":"10.3390/insects16060589","DOIUrl":null,"url":null,"abstract":"<p><p><i>Thaumatotibia leucotreta</i>, an important citrus pest in southern Africa, is subject to phytosanitary regulations for certain export markets. A systems approach has been developed as an alternative to standalone postharvest disinfestation methods, integrating multiple risk mitigation steps, including preharvest infestation monitoring. This study aimed to validate an existing preharvest monitoring protocol based on fallen fruit collected under designated data trees and to develop a novel monitoring system based on sampling of sanitation fruit. Monitoring was conducted in seven Navel orange orchards (N = 7 each year) during the 2021 and 2022 seasons, representing high and low infestation levels, respectively. Infestation levels were assessed over 11-12 weeks by inspecting fruit beneath four sets of five trees and all sanitation fruit collected per orchard. The new system, which involves inspecting a 100-fruit sample per orchard, was compared with the previous method. While the five-tree protocol tended to overestimate infestation, it remained effective. The sanitation-fruit sampling approach accurately reflected orchard-level infestation, with a 100-fruit sample sufficient for orchards as large as 20 hectares. Although random sampling is recommended, it was not essential for effectiveness. These results support the use of the new monitoring procedure in the systems approach for citrus exports for <i>T. leucotreta</i> risk mitigation.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192775/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16060589","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thaumatotibia leucotreta, an important citrus pest in southern Africa, is subject to phytosanitary regulations for certain export markets. A systems approach has been developed as an alternative to standalone postharvest disinfestation methods, integrating multiple risk mitigation steps, including preharvest infestation monitoring. This study aimed to validate an existing preharvest monitoring protocol based on fallen fruit collected under designated data trees and to develop a novel monitoring system based on sampling of sanitation fruit. Monitoring was conducted in seven Navel orange orchards (N = 7 each year) during the 2021 and 2022 seasons, representing high and low infestation levels, respectively. Infestation levels were assessed over 11-12 weeks by inspecting fruit beneath four sets of five trees and all sanitation fruit collected per orchard. The new system, which involves inspecting a 100-fruit sample per orchard, was compared with the previous method. While the five-tree protocol tended to overestimate infestation, it remained effective. The sanitation-fruit sampling approach accurately reflected orchard-level infestation, with a 100-fruit sample sufficient for orchards as large as 20 hectares. Although random sampling is recommended, it was not essential for effectiveness. These results support the use of the new monitoring procedure in the systems approach for citrus exports for T. leucotreta risk mitigation.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.