{"title":"Assessing Habitat Suitability for <i>Phloeosinus aubei</i> Perris in China: A MaxEnt-Based Predictive Analysis.","authors":"Sabbir Ahmad, Danping Xu, Xinqi Deng, Zhipeng He, Habib Ali, Zhihang Zhuo","doi":"10.3390/insects16060576","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change reshapes species distributions, necessitating proactive measures to mitigate ecological impacts. This study investigates the potential spread of <i>Phloeosinus aubei</i>, a bark beetle with significant ecological consequences, under future climate scenarios in China. Using the MaxEnt model, we integrated occurrence records and scientific literature with bioclimatic and terrain variables to predict habitat suitability. The results reveal that <i>P. aubei</i>'s distribution is highly influenced by precipitation and temperature, with key variables like annual precipitation (bio12, 30.4% contribution) and the minimum temperature of the coldest month (bio6, 29% contribution) driving habitat suitability. Notably, under high-emission scenarios (SSP5-8.5), high-suitability areas could expand by 82.29% by the 2050s due to warming-induced precipitation changes in southwestern China. Model validation confirms a high predictive accuracy, with an AUC value of 0.92, underscoring the reliability of these projections. These findings highlight the beetle's potential to colonize new regions, posing risks to forest ecosystems. The study underscores the need for adaptive management strategies, including early detection and climate-resilient forestry practices, to safeguard vulnerable ecosystems from invasive species under climate change.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16060576","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change reshapes species distributions, necessitating proactive measures to mitigate ecological impacts. This study investigates the potential spread of Phloeosinus aubei, a bark beetle with significant ecological consequences, under future climate scenarios in China. Using the MaxEnt model, we integrated occurrence records and scientific literature with bioclimatic and terrain variables to predict habitat suitability. The results reveal that P. aubei's distribution is highly influenced by precipitation and temperature, with key variables like annual precipitation (bio12, 30.4% contribution) and the minimum temperature of the coldest month (bio6, 29% contribution) driving habitat suitability. Notably, under high-emission scenarios (SSP5-8.5), high-suitability areas could expand by 82.29% by the 2050s due to warming-induced precipitation changes in southwestern China. Model validation confirms a high predictive accuracy, with an AUC value of 0.92, underscoring the reliability of these projections. These findings highlight the beetle's potential to colonize new regions, posing risks to forest ecosystems. The study underscores the need for adaptive management strategies, including early detection and climate-resilient forestry practices, to safeguard vulnerable ecosystems from invasive species under climate change.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.