A Retrospective Study of the Effects of COVID-19 Non-Pharmaceutical Interventions on Influenza in Canada.

IF 3.4 Q2 INFECTIOUS DISEASES
Heather MacTavish, Kenzie MacIntyre, Paniz Zadeh, Matthew Betti
{"title":"A Retrospective Study of the Effects of COVID-19 Non-Pharmaceutical Interventions on Influenza in Canada.","authors":"Heather MacTavish, Kenzie MacIntyre, Paniz Zadeh, Matthew Betti","doi":"10.3390/idr17030059","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: COVID-19 pandemic had a significant impact on endemic respiratory illnesses. Through behavioral changes in populations and government policy, mainly through non-pharmaceutical interventions (NPIs), Canada saw historic lows in the number of influenza A cases from 2020 through 2022. In this study, we use historical influenza A data for Canada and three provincial jurisdictions within Canada-Ontario, Quebec, and Alberta-to quantify the effects of these NPIs on influenza A. <b>Methods</b>: We aim to see which base parameters and derived parameters of an SIR model are most affected by NPIs. We fit a simple SIR model to historical influenza data to get average paramters for seasonal influenza. We then compare these parameters to those predicted by fitting influenza cases during the COVID-19 pandemic. <b>Results</b>: We find substantial differences in the effective population size and basic reproduction number during the COVID-19 pandemic. We also see the effects of fatigue and relaxation of NPIs when comparing the years 2020, 2021, and 2022. <b>Conclusions</b>: We find that the effective population size is the main driver of change to disease spread and discuss how these retrospective estimates can be used for future forecasting.</p>","PeriodicalId":13579,"journal":{"name":"Infectious Disease Reports","volume":"17 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192953/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/idr17030059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: COVID-19 pandemic had a significant impact on endemic respiratory illnesses. Through behavioral changes in populations and government policy, mainly through non-pharmaceutical interventions (NPIs), Canada saw historic lows in the number of influenza A cases from 2020 through 2022. In this study, we use historical influenza A data for Canada and three provincial jurisdictions within Canada-Ontario, Quebec, and Alberta-to quantify the effects of these NPIs on influenza A. Methods: We aim to see which base parameters and derived parameters of an SIR model are most affected by NPIs. We fit a simple SIR model to historical influenza data to get average paramters for seasonal influenza. We then compare these parameters to those predicted by fitting influenza cases during the COVID-19 pandemic. Results: We find substantial differences in the effective population size and basic reproduction number during the COVID-19 pandemic. We also see the effects of fatigue and relaxation of NPIs when comparing the years 2020, 2021, and 2022. Conclusions: We find that the effective population size is the main driver of change to disease spread and discuss how these retrospective estimates can be used for future forecasting.

加拿大COVID-19非药物干预措施对流感影响的回顾性研究
背景/目的:COVID-19大流行对地方性呼吸系统疾病有重大影响。通过人口行为和政府政策的改变,主要是通过非药物干预措施,加拿大从2020年到2022年的甲型流感病例数量达到了历史最低水平。在这项研究中,我们使用了加拿大和加拿大三个省级管辖区(安大略省、魁北克省和阿尔伯塔省)的历史甲型流感数据来量化这些npi对甲型流感的影响。方法:我们的目标是看到SIR模型的哪些基本参数和衍生参数受npi的影响最大。我们将一个简单的SIR模型拟合到历史流感数据中,得到季节性流感的平均参数。然后,我们将这些参数与COVID-19大流行期间拟合流感病例预测的参数进行比较。结果:在COVID-19大流行期间,有效种群规模和基本繁殖数存在显著差异。通过对2020年、2021年和2022年的比较,我们也看到了npi的疲劳和放松的影响。结论:我们发现有效种群规模是疾病传播变化的主要驱动因素,并讨论了如何将这些回顾性估计用于未来预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infectious Disease Reports
Infectious Disease Reports INFECTIOUS DISEASES-
CiteScore
5.10
自引率
0.00%
发文量
82
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信