Context-Aware Enhanced Feature Refinement for small object detection with Deformable DETR.

IF 2.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Neurorobotics Pub Date : 2025-06-10 eCollection Date: 2025-01-01 DOI:10.3389/fnbot.2025.1588565
Donghao Shi, Cunbin Zhao, Jianwen Shao, Minjie Feng, Lei Luo, Bing Ouyang, Jiamin Huang
{"title":"Context-Aware Enhanced Feature Refinement for small object detection with Deformable DETR.","authors":"Donghao Shi, Cunbin Zhao, Jianwen Shao, Minjie Feng, Lei Luo, Bing Ouyang, Jiamin Huang","doi":"10.3389/fnbot.2025.1588565","DOIUrl":null,"url":null,"abstract":"<p><p>Small object detection is a critical task in applications like autonomous driving and ship black smoke detection. While Deformable DETR has advanced small object detection, it faces limitations due to its reliance on CNNs for feature extraction, which restricts global context understanding and results in suboptimal feature representation. Additionally, it struggles with detecting small objects that occupy only a few pixels due to significant size disparities. To overcome these challenges, we propose the Context-Aware Enhanced Feature Refinement Deformable DETR, an improved Deformable DETR network. Our approach introduces Mask Attention in the backbone to improve feature extraction while effectively suppressing irrelevant background information. Furthermore, we propose a Context-Aware Enhanced Feature Refinement Encoder to address the issue of small objects with limited pixel representation. Experimental results demonstrate that our method outperforms the baseline, achieving a 2.1% improvement in mAP.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"19 ","pages":"1588565"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185399/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2025.1588565","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Small object detection is a critical task in applications like autonomous driving and ship black smoke detection. While Deformable DETR has advanced small object detection, it faces limitations due to its reliance on CNNs for feature extraction, which restricts global context understanding and results in suboptimal feature representation. Additionally, it struggles with detecting small objects that occupy only a few pixels due to significant size disparities. To overcome these challenges, we propose the Context-Aware Enhanced Feature Refinement Deformable DETR, an improved Deformable DETR network. Our approach introduces Mask Attention in the backbone to improve feature extraction while effectively suppressing irrelevant background information. Furthermore, we propose a Context-Aware Enhanced Feature Refinement Encoder to address the issue of small objects with limited pixel representation. Experimental results demonstrate that our method outperforms the baseline, achieving a 2.1% improvement in mAP.

上下文感知增强特征细化小对象检测与变形的DETR。
在自动驾驶和船舶黑烟检测等应用中,小物体检测是一项关键任务。虽然Deformable DETR具有先进的小目标检测,但由于其依赖cnn进行特征提取,限制了全局上下文理解并导致次优特征表示,因此面临局限性。此外,由于显著的尺寸差异,它难以检测仅占用几个像素的小物体。为了克服这些挑战,我们提出了上下文感知增强特征细化可变形DETR,这是一种改进的可变形DETR网络。我们的方法在主干中引入了掩模注意,以改进特征提取,同时有效地抑制不相关的背景信息。此外,我们提出了一个上下文感知增强特征细化编码器,以解决像素表示有限的小对象问题。实验结果表明,我们的方法优于基线,实现了2.1%的mAP改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信