Tetsuya Adachi, Hayata Imamura, Toyonari Yaji, Kentaro Mochizuki, Wenliang Zhu, Satoru Shindo, Shunichi Shibata, Keiji Adachi, Toshiro Yamamoto, Fumishige Oseko, Osam Mazda, Kyoko Miura, Toshihisa Kawai, Giuseppe Pezzotti
{"title":"Spectroscopic Analysis of the Extracellular Matrix in Naked Mole-Rat Temporomandibular Joints.","authors":"Tetsuya Adachi, Hayata Imamura, Toyonari Yaji, Kentaro Mochizuki, Wenliang Zhu, Satoru Shindo, Shunichi Shibata, Keiji Adachi, Toshiro Yamamoto, Fumishige Oseko, Osam Mazda, Kyoko Miura, Toshihisa Kawai, Giuseppe Pezzotti","doi":"10.3390/gels11060414","DOIUrl":null,"url":null,"abstract":"<p><p>Naked mole-rats are extremely long-living rodents with a maximum lifespan of 37 years, and their cellular aging and tissue aging are almost nonexistent. Therefore, in this study, we aim to analyze the extracellular matrix of the temporomandibular joint (TMJ) of naked mole-rats at the molecular level and explore the molecules involved in anti-aging and their localization. Micro-computed tomography (CT) scans revealed increased mineral density and wear of the mandibular condyle in aged mice. Conversely, CT scans did not reveal wear of the mandibular condyle in naked mole-rats, and histological analysis did not reveal wear of the articular disk. Using various spectroscopies and artificial intelligence (AI), we found that the articular disk of naked mole-rats is composed of a cartilage-like layer with hyaluronic acid and collagen fibers with varying orientations, which is thought to have relieved mechanical stress and have protected the mandibular condyle. These results suggest that not only the amount, but also the spatial distribution of the extracellular matrix is important for the anti-aging properties of the TMJ, and may contribute to elucidating the pathology of TMJ disorders and other degenerative conditions and developing therapeutic drugs.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 6","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192243/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11060414","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Naked mole-rats are extremely long-living rodents with a maximum lifespan of 37 years, and their cellular aging and tissue aging are almost nonexistent. Therefore, in this study, we aim to analyze the extracellular matrix of the temporomandibular joint (TMJ) of naked mole-rats at the molecular level and explore the molecules involved in anti-aging and their localization. Micro-computed tomography (CT) scans revealed increased mineral density and wear of the mandibular condyle in aged mice. Conversely, CT scans did not reveal wear of the mandibular condyle in naked mole-rats, and histological analysis did not reveal wear of the articular disk. Using various spectroscopies and artificial intelligence (AI), we found that the articular disk of naked mole-rats is composed of a cartilage-like layer with hyaluronic acid and collagen fibers with varying orientations, which is thought to have relieved mechanical stress and have protected the mandibular condyle. These results suggest that not only the amount, but also the spatial distribution of the extracellular matrix is important for the anti-aging properties of the TMJ, and may contribute to elucidating the pathology of TMJ disorders and other degenerative conditions and developing therapeutic drugs.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.