Monserrat Sanpedro-Díaz, Alitzel Belem García-Hernández, Ana Luisa Gómez-Gómez, Julia Salgado-Cruz, Oswaldo Arturo Ramos-Monroy, Rubén Oliver-Espinoza, Griselda Argelia Rivera-Vargas, Ma de la Paz Salgado-Cruz
{"title":"Trends and Future Perspectives of Polysaccharide-Based Bigels from Seeds, Vegetable Oils, and Waxes: A Bibliometric Review.","authors":"Monserrat Sanpedro-Díaz, Alitzel Belem García-Hernández, Ana Luisa Gómez-Gómez, Julia Salgado-Cruz, Oswaldo Arturo Ramos-Monroy, Rubén Oliver-Espinoza, Griselda Argelia Rivera-Vargas, Ma de la Paz Salgado-Cruz","doi":"10.3390/gels11060413","DOIUrl":null,"url":null,"abstract":"<p><p>Gels are semi-solid colloidal systems characterized by three-dimensional networks capable of retaining up to 99% of liquid while exhibiting both solid-like and liquid-like properties. A novel biphasic system, the bigel, consists of hydrogel and oleogel, enabling the encapsulation of hydrophilic and lipophilic compounds. Their structure and functionality are influenced by the distribution of gel phases (e.g., oleogel-in-hydrogel or hydrogel-in-oleogel). This study aims to review current trends in polysaccharide-based bigels derived from seeds, vegetable oils and waxes, highlighting their biocompatibility, sustainability and potential food applications. A bibliometric analysis of 157 documents using VOSviewer identified four key thematic clusters: structured materials, delivery systems, pharmaceutical applications, and physicochemical characterization. Principal component analysis revealed strong correlations between terms, while also highlighting emerging areas such as 3D printing. This analysis demonstrated that seed-derived polysaccharides, including chia seed mucilage and guar gum, improve bigel structure and rheological properties, offering sustainable plant-based alternatives. Additionally, innovations such as extrusion-based 3D printing, functional food design, controlled drug release, bioactive compound delivery, and fat replacement are helping to support the further development of these systems. Finally, bibliometric tools remain instrumental in identifying research gaps and guiding future directions in this field.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 6","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191914/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11060413","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Gels are semi-solid colloidal systems characterized by three-dimensional networks capable of retaining up to 99% of liquid while exhibiting both solid-like and liquid-like properties. A novel biphasic system, the bigel, consists of hydrogel and oleogel, enabling the encapsulation of hydrophilic and lipophilic compounds. Their structure and functionality are influenced by the distribution of gel phases (e.g., oleogel-in-hydrogel or hydrogel-in-oleogel). This study aims to review current trends in polysaccharide-based bigels derived from seeds, vegetable oils and waxes, highlighting their biocompatibility, sustainability and potential food applications. A bibliometric analysis of 157 documents using VOSviewer identified four key thematic clusters: structured materials, delivery systems, pharmaceutical applications, and physicochemical characterization. Principal component analysis revealed strong correlations between terms, while also highlighting emerging areas such as 3D printing. This analysis demonstrated that seed-derived polysaccharides, including chia seed mucilage and guar gum, improve bigel structure and rheological properties, offering sustainable plant-based alternatives. Additionally, innovations such as extrusion-based 3D printing, functional food design, controlled drug release, bioactive compound delivery, and fat replacement are helping to support the further development of these systems. Finally, bibliometric tools remain instrumental in identifying research gaps and guiding future directions in this field.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.