Performance Characterization and Antibacterial Activity of a Composite Hydrogel Composed of Oxidized κ-Carrageenan, Acrylamide, and Silver-Based Metal-Organic Frameworks.
Bo Qi, Zhaoyu Li, Chuang Pan, Yongqiang Zhao, Xiaoshan Long, Chunsheng Li, Yueqi Wang, Xiao Hu, Di Wang, Shaoling Yang
{"title":"Performance Characterization and Antibacterial Activity of a Composite Hydrogel Composed of Oxidized κ-Carrageenan, Acrylamide, and Silver-Based Metal-Organic Frameworks.","authors":"Bo Qi, Zhaoyu Li, Chuang Pan, Yongqiang Zhao, Xiaoshan Long, Chunsheng Li, Yueqi Wang, Xiao Hu, Di Wang, Shaoling Yang","doi":"10.3390/gels11060407","DOIUrl":null,"url":null,"abstract":"<p><p>To advance seaweed polysaccharide applications in hydrogel wound dressings, five antibacterial composite hydrogels (groups A~E) were synthesized using oxidized κ-carrageenan (OKC), acrylamide (AM), and progressively increasing concentrations of silver-based metal-organic frameworks (Ag-MOFs). Systematic characterization revealed concentration-dependent effects: (1) positive correlations were obtained for the moisture content (MC, maximized at 82.70% in E) and antibacterial efficacy (dose-dependent enhancement); (2) negative impacts were obtained for the swelling ratio (SR, E: 479% vs. A: 808%); and (3) high-dose drawbacks but low-dose benefits in terms of water resistance (WR), tensile strength (TS), elongation at break (EB), and microstructure were obtained. Group B demonstrated optimal Ag-MOFs loading, enhancing TS and EB, while excessive Ag-MOFs loading in C~E significantly degraded them (<i>p</i> < 0.05). Microstructural analysis showed severe 3D spatial damage in D~E. Furthermore, cytocompatibility assessments revealed that all groups maintained a cell viability exceeding 90%, demonstrating excellent biocompatibility. Among them, A~C showed a viability statistically equivalent to the control (<i>p</i> > 0.05) and were significantly higher than D~E (<i>p</i> < 0.05). In conclusion, group B emerged as the optimal Ag-MOFs formulation and exhibited superior WR, enhanced mechanical strength (TS and EB), and potent antibacterial activity while maintaining microstructural integrity and excellent biosafety. This Ag-MOFs/OKC/PAM hydrogel provides dual infection prevention and tissue support, maximizing seaweed polysaccharide benefits with excellent biocompatibility.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 6","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191545/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11060407","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
To advance seaweed polysaccharide applications in hydrogel wound dressings, five antibacterial composite hydrogels (groups A~E) were synthesized using oxidized κ-carrageenan (OKC), acrylamide (AM), and progressively increasing concentrations of silver-based metal-organic frameworks (Ag-MOFs). Systematic characterization revealed concentration-dependent effects: (1) positive correlations were obtained for the moisture content (MC, maximized at 82.70% in E) and antibacterial efficacy (dose-dependent enhancement); (2) negative impacts were obtained for the swelling ratio (SR, E: 479% vs. A: 808%); and (3) high-dose drawbacks but low-dose benefits in terms of water resistance (WR), tensile strength (TS), elongation at break (EB), and microstructure were obtained. Group B demonstrated optimal Ag-MOFs loading, enhancing TS and EB, while excessive Ag-MOFs loading in C~E significantly degraded them (p < 0.05). Microstructural analysis showed severe 3D spatial damage in D~E. Furthermore, cytocompatibility assessments revealed that all groups maintained a cell viability exceeding 90%, demonstrating excellent biocompatibility. Among them, A~C showed a viability statistically equivalent to the control (p > 0.05) and were significantly higher than D~E (p < 0.05). In conclusion, group B emerged as the optimal Ag-MOFs formulation and exhibited superior WR, enhanced mechanical strength (TS and EB), and potent antibacterial activity while maintaining microstructural integrity and excellent biosafety. This Ag-MOFs/OKC/PAM hydrogel provides dual infection prevention and tissue support, maximizing seaweed polysaccharide benefits with excellent biocompatibility.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.