Drying of Functional Hydrogels: Development of a Workflow for Bioreactor-Integrated Freeze-Drying of Protein-Coated Alginate Microcarriers for iPS Cell-Based Screenings.
Johnn Majd Balsters, Alexander Bäumchen, Michael Roland, Stefan Diebels, Julia C Neubauer, Michael M Gepp, Heiko Zimmermann
{"title":"Drying of Functional Hydrogels: Development of a Workflow for Bioreactor-Integrated Freeze-Drying of Protein-Coated Alginate Microcarriers for iPS Cell-Based Screenings.","authors":"Johnn Majd Balsters, Alexander Bäumchen, Michael Roland, Stefan Diebels, Julia C Neubauer, Michael M Gepp, Heiko Zimmermann","doi":"10.3390/gels11060439","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-coated ultra-high viscosity (UHV)-alginate hydrogels are essential to mimic the physiological in vivo environment of humans in several in vitro applications. This work presents an optimized bioreactor-integrated freeze-drying process for Matrigel<sup>TM</sup>-coated UHV-alginate microcarriers in the context of human induced pluripotent stem cell (hiPSC) expansion. The impact of freeze-drying on the UHV-alginate microcarriers using trehalose 100 mg/mL in 0.9% NaCl as a lyoprotective agent, as well as the stem cell response using hiPSCs, was analyzed using microscopy-based screenings. First observations of the process showed that the integrity of the cake was preserved in the samples with a maximum vapor exchanging rate. Following rehydration, the UHV-alginate microcarriers retained their original morphology. Upon the addition of Poloxamer 188, stickiness and bubble formation were reduced. The expansion of hiPSCs in a suspension bioreactor resulted in a 5-7-fold increase in total cell count, yielding at least 1.3 × 10<sup>7</sup> cells with viability exceeding 80% after seven days of cultivation. In flow cytometry analysis, the pluripotency factors OCT3/4 and SSEA4 resulted in positive signals in over 98% of cells, while the differentiation factor SSEA1 was positive in fewer than 10% of cells. Supported by preceding in silico predictions of drying time, this study presents, for the first time, basic steps toward a \"ready-to-use\" bioreactor-integrated freeze-drying process for UHV-alginate microcarriers in the iPSC context.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 6","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191970/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11060439","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Protein-coated ultra-high viscosity (UHV)-alginate hydrogels are essential to mimic the physiological in vivo environment of humans in several in vitro applications. This work presents an optimized bioreactor-integrated freeze-drying process for MatrigelTM-coated UHV-alginate microcarriers in the context of human induced pluripotent stem cell (hiPSC) expansion. The impact of freeze-drying on the UHV-alginate microcarriers using trehalose 100 mg/mL in 0.9% NaCl as a lyoprotective agent, as well as the stem cell response using hiPSCs, was analyzed using microscopy-based screenings. First observations of the process showed that the integrity of the cake was preserved in the samples with a maximum vapor exchanging rate. Following rehydration, the UHV-alginate microcarriers retained their original morphology. Upon the addition of Poloxamer 188, stickiness and bubble formation were reduced. The expansion of hiPSCs in a suspension bioreactor resulted in a 5-7-fold increase in total cell count, yielding at least 1.3 × 107 cells with viability exceeding 80% after seven days of cultivation. In flow cytometry analysis, the pluripotency factors OCT3/4 and SSEA4 resulted in positive signals in over 98% of cells, while the differentiation factor SSEA1 was positive in fewer than 10% of cells. Supported by preceding in silico predictions of drying time, this study presents, for the first time, basic steps toward a "ready-to-use" bioreactor-integrated freeze-drying process for UHV-alginate microcarriers in the iPSC context.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.