{"title":"Dosimetric Evaluation of the Sensitivity of PAGAT Gel Dosimeters Infused with Clinically Used Gadolinium-Based Contrast Agents.","authors":"Melani Fuentealba, Carolina Vallejos, Sergio Díez, Mauricio Santibáñez","doi":"10.3390/gels11060416","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates the impact of gadolinium-based contrast agents (Omniscan, Dotarem, and Gadovist) on the performance of PAGAT gel dosimeters using spectrophotometric analysis. Dosimeters were infused with gadolinium at concentrations ranging from 0 to 40 mg/mL and irradiated with a 6 MV photon beam over a dose range of 0-15 Gy. Regarding dosimeter behavior, Dotarem exhibited an enhancement in optical density prior to irradiation due to polymerization reactions between the dosimeter and the contrast agent starting at 10 mg/mL, which compromised optical readings above 20 mg/mL. Omniscan consistently showed 37.7% lower sensitivity than standard PAGAT across all concentrations and dose levels. Conversely, Gadovist enhanced sensitivity by up to 50% at 20 mg/mL, with additional gains at higher concentrations, although accompanied by saturation at lower dose levels. Radiological analysis showed that all tested concentrations maintained mass energy-absorption coefficient differences below 1% and water-equivalence in effective atomic number within 5% at 6 MV. These findings underscore the importance of selecting an appropriate contrast agent to enhance gel dosimeter sensitivity, particularly in low-dose regions where measurement uncertainty increases. Additionally, gadolinium-infused PAGAT gels show strong potential for assessing dose enhancement phenomena. Their sensitivity, threshold behavior, and radiological properties suggest they may be suitable for applications in dose enhancement dosimetry as well as conventional clinical settings.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 6","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192002/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11060416","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates the impact of gadolinium-based contrast agents (Omniscan, Dotarem, and Gadovist) on the performance of PAGAT gel dosimeters using spectrophotometric analysis. Dosimeters were infused with gadolinium at concentrations ranging from 0 to 40 mg/mL and irradiated with a 6 MV photon beam over a dose range of 0-15 Gy. Regarding dosimeter behavior, Dotarem exhibited an enhancement in optical density prior to irradiation due to polymerization reactions between the dosimeter and the contrast agent starting at 10 mg/mL, which compromised optical readings above 20 mg/mL. Omniscan consistently showed 37.7% lower sensitivity than standard PAGAT across all concentrations and dose levels. Conversely, Gadovist enhanced sensitivity by up to 50% at 20 mg/mL, with additional gains at higher concentrations, although accompanied by saturation at lower dose levels. Radiological analysis showed that all tested concentrations maintained mass energy-absorption coefficient differences below 1% and water-equivalence in effective atomic number within 5% at 6 MV. These findings underscore the importance of selecting an appropriate contrast agent to enhance gel dosimeter sensitivity, particularly in low-dose regions where measurement uncertainty increases. Additionally, gadolinium-infused PAGAT gels show strong potential for assessing dose enhancement phenomena. Their sensitivity, threshold behavior, and radiological properties suggest they may be suitable for applications in dose enhancement dosimetry as well as conventional clinical settings.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.