Interpretable Machine Learning Analysis of Design Factors in Hydrogel Supercapacitors.

IF 5.3 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2025-06-18 DOI:10.3390/gels11060464
Liying Xu, Siqi Liu, Dandan Hu, Junhao Liu, Yuze Zhang, Ziqiang Li, Zichuan Su, Daxin Liang
{"title":"Interpretable Machine Learning Analysis of Design Factors in Hydrogel Supercapacitors.","authors":"Liying Xu, Siqi Liu, Dandan Hu, Junhao Liu, Yuze Zhang, Ziqiang Li, Zichuan Su, Daxin Liang","doi":"10.3390/gels11060464","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the relationships between design factors is crucial for the development of hydrogel supercapacitors, yet the relative importance and interdependencies of material properties and operating conditions remain unclear. This study employs interpretable machine learning to analyze the design factors that affect hydrogel supercapacitor performance, using 232 experimental samples from 41 recent studies. SHAP analysis was implemented to quantify parameter importance and reveal feature interactions among 16 key design parameters, including polymer types, electrolyte formulations, and operating conditions. Results show that synthetic vinyl polymers most strongly influence specific capacitance, while conductive polymers predominantly affect cycle stability. Ionic conductivity emerged as the most impactful parameter despite moderate feature importance, indicating complex nonlinear relationships. Critical interdependencies between polymer concentration and electrolyte formulation suggest that optimal design requires coordinated parameter selection rather than independent optimization. This interpretable framework provides quantitative insights into design factor hierarchies and parameter interdependencies, offering evidence-based guidelines for rational material selection in hydrogel supercapacitor development.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192259/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11060464","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the relationships between design factors is crucial for the development of hydrogel supercapacitors, yet the relative importance and interdependencies of material properties and operating conditions remain unclear. This study employs interpretable machine learning to analyze the design factors that affect hydrogel supercapacitor performance, using 232 experimental samples from 41 recent studies. SHAP analysis was implemented to quantify parameter importance and reveal feature interactions among 16 key design parameters, including polymer types, electrolyte formulations, and operating conditions. Results show that synthetic vinyl polymers most strongly influence specific capacitance, while conductive polymers predominantly affect cycle stability. Ionic conductivity emerged as the most impactful parameter despite moderate feature importance, indicating complex nonlinear relationships. Critical interdependencies between polymer concentration and electrolyte formulation suggest that optimal design requires coordinated parameter selection rather than independent optimization. This interpretable framework provides quantitative insights into design factor hierarchies and parameter interdependencies, offering evidence-based guidelines for rational material selection in hydrogel supercapacitor development.

水凝胶超级电容器设计因素的可解释机器学习分析。
理解设计因素之间的关系对于水凝胶超级电容器的发展至关重要,但材料特性和操作条件的相对重要性和相互依赖性仍不清楚。本研究采用可解释的机器学习来分析影响水凝胶超级电容器性能的设计因素,使用了来自41项最新研究的232个实验样本。采用SHAP分析来量化参数的重要性,并揭示16个关键设计参数(包括聚合物类型、电解质配方和操作条件)之间的特征相互作用。结果表明,合成乙烯基聚合物对比电容的影响最大,而导电聚合物对循环稳定性的影响最大。离子电导率是最具影响力的参数,尽管其特征重要性不高,但表明了复杂的非线性关系。聚合物浓度和电解质配方之间的相互依赖关系表明,优化设计需要协调参数选择,而不是独立优化。这个可解释的框架提供了对设计因素层次和参数相互依赖性的定量见解,为水凝胶超级电容器开发中的合理材料选择提供了基于证据的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信