{"title":"Antibacterial Composites Based on Alginate/Egg White and ZnO Nanoparticles with the Addition of Essential Oils.","authors":"Adrian-Ionuț Nicoară, Adelina Valentina Anton, Roxana Doina Trușcă, Alexandra Cătălina Bîrcă, Cornelia-Ioana Ilie, Lia-Mara Dițu","doi":"10.3390/gels11060459","DOIUrl":null,"url":null,"abstract":"<p><p>A series of hydrogels containing sodium alginate at different concentrations (2%, 3%, and 4%) and egg white were prepared through ionic cross-linking with calcium chloride (CaCl<sub>2</sub>) to obtain composite dressing materials. ZnO nanoparticles coated with eucalyptus or lavender essential oil were introduced into the hydrogel matrix to enhance antibacterial properties. The resulting hydrogels were freeze-dried to enhance mechanical properties, increase the porosity of the dressing, and facilitate further evaluations. A variety of analytical methods, including scanning electron microscopy (SEM), X-ray dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR) were employed to characterize the composites. The developed composites exhibited high porosity and a swelling degree exceeding 200% after 3 days. Additionally, water absorption capacity increased with higher alginate concentrations in the samples. Furthermore, they demonstrated significant antibiofilm activity against <i>Staphylococcus aureus</i>, <i>Enterococcus faecalis</i>, and <i>Escherichia coli</i>, with the samples containing 4% alginate showing the best results.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 6","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191582/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11060459","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A series of hydrogels containing sodium alginate at different concentrations (2%, 3%, and 4%) and egg white were prepared through ionic cross-linking with calcium chloride (CaCl2) to obtain composite dressing materials. ZnO nanoparticles coated with eucalyptus or lavender essential oil were introduced into the hydrogel matrix to enhance antibacterial properties. The resulting hydrogels were freeze-dried to enhance mechanical properties, increase the porosity of the dressing, and facilitate further evaluations. A variety of analytical methods, including scanning electron microscopy (SEM), X-ray dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR) were employed to characterize the composites. The developed composites exhibited high porosity and a swelling degree exceeding 200% after 3 days. Additionally, water absorption capacity increased with higher alginate concentrations in the samples. Furthermore, they demonstrated significant antibiofilm activity against Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli, with the samples containing 4% alginate showing the best results.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.