{"title":"Ambient-Dried Silica Xerogels with Enhanced Strength and Thermal Insulation via Calcium Ion-Glycerol Synergistic Crosslinking.","authors":"Xiaoyu Xie, Zilin Zhu, Yu Meng, Lijia Wang, Fuquan Zhao, Lingqing Chen, Lijie Jiang, Ming Yan, Xiaofan Zhou","doi":"10.3390/gels11060462","DOIUrl":null,"url":null,"abstract":"<p><p>Despite their high porosity and wide applicability, silica xerogels face mechanical strength limitations for high-performance applications. This study presents an ambient-pressure sol-gel strategy utilizing calcium-glycerol synergy to produce robust xerogels with enhanced properties. Physicochemical analyses reveal that controlled Ca<sup>2+</sup> incorporation (optimal at 6 wt.%) accelerates gelation kinetics while establishing a hybrid network through ionic complexation and hydrogen bonding. The resulting xerogels achieve exceptional compressive strength (30.8 MPa) while maintaining uniform mesoporosity (50-90 nm pore size). Remarkably, the as-prepared silica xerogels demonstrate outstanding thermal insulation, maintaining a 220 °C temperature differential in 300 °C environments. These results prove that the ambient-pressure sol-gel strategy utilizing calcium-glycerol synergy can enhance the mechanical performance and thermal insulation performance of silica xerogels with the dual actions of Ca<sup>2+</sup>-induced network reinforcement via silanol coordination and glycerol-mediated stress relief during ambient drying. Overall, this work can offer a scalable, energy-efficient approach to produce high-performance silica xerogels with huge potential in building envelopes and aerospace systems.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 6","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191904/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11060462","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Despite their high porosity and wide applicability, silica xerogels face mechanical strength limitations for high-performance applications. This study presents an ambient-pressure sol-gel strategy utilizing calcium-glycerol synergy to produce robust xerogels with enhanced properties. Physicochemical analyses reveal that controlled Ca2+ incorporation (optimal at 6 wt.%) accelerates gelation kinetics while establishing a hybrid network through ionic complexation and hydrogen bonding. The resulting xerogels achieve exceptional compressive strength (30.8 MPa) while maintaining uniform mesoporosity (50-90 nm pore size). Remarkably, the as-prepared silica xerogels demonstrate outstanding thermal insulation, maintaining a 220 °C temperature differential in 300 °C environments. These results prove that the ambient-pressure sol-gel strategy utilizing calcium-glycerol synergy can enhance the mechanical performance and thermal insulation performance of silica xerogels with the dual actions of Ca2+-induced network reinforcement via silanol coordination and glycerol-mediated stress relief during ambient drying. Overall, this work can offer a scalable, energy-efficient approach to produce high-performance silica xerogels with huge potential in building envelopes and aerospace systems.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.