{"title":"Advances in Composite Stimuli-Responsive Hydrogels for Wound Healing: Mechanisms and Applications.","authors":"Ke Ding, Mingrui Liao, Yingyu Wang, Jian R Lu","doi":"10.3390/gels11060420","DOIUrl":null,"url":null,"abstract":"<p><p>Stimuli-responsive hydrogels have emerged as a promising class of biomaterials for advanced wound healing applications, offering dynamic and controllable responses to the wound microenvironment. These hydrogels are designed to respond to specific stimuli, such as pH, temperature, light, and enzyme activity, enabling precise regulation of drug release, antimicrobial activity, and tissue regeneration. Composite stimuli-responsive hydrogels, by integrating multiple response mechanisms and functions, show potential for addressing the diverse needs of wound healing. This review explores the biological mechanisms of wound healing, the design and classification of composite stimuli-responsive hydrogels, and the key fabrication strategies employed to optimise their properties. Despite their immense potential, unresolved challenges such as biocompatibility, long-term stability, and scalability continue to limit their translation into clinical practice. Future research will focus on integrating hydrogels with smart wearable devices, AI-driven personalised medicine, and 3D bioprinting technologies to develop next-generation wound care solutions. With continuous advancements in biomaterials science and bioengineering, stimuli-responsive hydrogels hold great promise for revolutionising wound management.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191909/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11060420","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Stimuli-responsive hydrogels have emerged as a promising class of biomaterials for advanced wound healing applications, offering dynamic and controllable responses to the wound microenvironment. These hydrogels are designed to respond to specific stimuli, such as pH, temperature, light, and enzyme activity, enabling precise regulation of drug release, antimicrobial activity, and tissue regeneration. Composite stimuli-responsive hydrogels, by integrating multiple response mechanisms and functions, show potential for addressing the diverse needs of wound healing. This review explores the biological mechanisms of wound healing, the design and classification of composite stimuli-responsive hydrogels, and the key fabrication strategies employed to optimise their properties. Despite their immense potential, unresolved challenges such as biocompatibility, long-term stability, and scalability continue to limit their translation into clinical practice. Future research will focus on integrating hydrogels with smart wearable devices, AI-driven personalised medicine, and 3D bioprinting technologies to develop next-generation wound care solutions. With continuous advancements in biomaterials science and bioengineering, stimuli-responsive hydrogels hold great promise for revolutionising wound management.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.