Alvaro Javier Esteban Villota Mora, Yeimy Ordoñez Muñoz, Eduardo Borges Lied, Vsevolod Mymrin, Karina Querne de Carvalho, Fernando Hermes Passig
{"title":"Influence of support medium height on the optimization of performance of an Upflow Anaerobic Hybrid Reactor (UAHB) treating synthetic wastewater.","authors":"Alvaro Javier Esteban Villota Mora, Yeimy Ordoñez Muñoz, Eduardo Borges Lied, Vsevolod Mymrin, Karina Querne de Carvalho, Fernando Hermes Passig","doi":"10.1080/09593330.2025.2519960","DOIUrl":null,"url":null,"abstract":"<p><p>The support media of upflow anaerobic hybrid reactors (UAHB) facilitates the formation and retention of microbial biofilm and the contact between the influent and microorganisms. Previous studies demonstrated the importance of support media height (SMH) to organic matter removal; however, the influence of this parameter in the UAHB reactor performance under varying conditions is still a gap. The Central Composite Design (CCD) method was applied to optimize the removal of organic matter by varying the cross-sectional area and height of the reactor based on 42 studies. The modelling indicated 72-87% COD removal efficiencies with 0.007 m<sup>2</sup> cross-sectional area and 0.75 m height, with 5.5 L total volume. Thus, three pilot-scale UAHB reactors, filled with Corrugated Polyvinyl Chloride (PVC) rings at different heights (6, 15, and 24 cm), were operated with a hydraulic retention time of 10 h, treating synthetic effluent with a COD of 490 mgO<sub>2</sub> L<sup>-1</sup>. Unlike previous studies, this study evaluated identical UAHBs operating in parallel under controlled conditions. The UAHB reactors presented stability, buffering capacity, and neutral pH during the operation. The reactor with higher SMH (24 cm) achieved higher removal efficiencies of turbidity (90%), COD (72.6%), and TS (63%). Variations in SMH affected reactor performance, as corroborated by the negative and 'very strong' correlation for turbidity, COD, and TS and a 'moderate' correlation for fixed and volatile solids. The novelty of this study lies in its comprehensive assessment of how varying SMH affects UAHB reactor performance, guiding future advancements in its design for efficient wastewater treatment.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-22"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2519960","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The support media of upflow anaerobic hybrid reactors (UAHB) facilitates the formation and retention of microbial biofilm and the contact between the influent and microorganisms. Previous studies demonstrated the importance of support media height (SMH) to organic matter removal; however, the influence of this parameter in the UAHB reactor performance under varying conditions is still a gap. The Central Composite Design (CCD) method was applied to optimize the removal of organic matter by varying the cross-sectional area and height of the reactor based on 42 studies. The modelling indicated 72-87% COD removal efficiencies with 0.007 m2 cross-sectional area and 0.75 m height, with 5.5 L total volume. Thus, three pilot-scale UAHB reactors, filled with Corrugated Polyvinyl Chloride (PVC) rings at different heights (6, 15, and 24 cm), were operated with a hydraulic retention time of 10 h, treating synthetic effluent with a COD of 490 mgO2 L-1. Unlike previous studies, this study evaluated identical UAHBs operating in parallel under controlled conditions. The UAHB reactors presented stability, buffering capacity, and neutral pH during the operation. The reactor with higher SMH (24 cm) achieved higher removal efficiencies of turbidity (90%), COD (72.6%), and TS (63%). Variations in SMH affected reactor performance, as corroborated by the negative and 'very strong' correlation for turbidity, COD, and TS and a 'moderate' correlation for fixed and volatile solids. The novelty of this study lies in its comprehensive assessment of how varying SMH affects UAHB reactor performance, guiding future advancements in its design for efficient wastewater treatment.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current