Can Deep Learning-Based Auto-Contouring Software Achieve Accurate Pelvic Volume Delineation in Volumetric Image-Guided Radiotherapy for Prostate Cancer? A Preliminary Multicentric Analysis.

IF 2.8 4区 医学 Q2 ONCOLOGY
Cristiano Grossi, Fernando Munoz, Ilaria Bonavero, Eulalie Joelle Tondji Ngassam, Elisabetta Garibaldi, Claudia Airaldi, Elena Celia, Daniela Nassisi, Andrea Brignoli, Elisabetta Trino, Lavinia Bianco, Silvia Leardi, Diego Bongiovanni, Chiara Valero, Maria Grazia Ruo Redda
{"title":"Can Deep Learning-Based Auto-Contouring Software Achieve Accurate Pelvic Volume Delineation in Volumetric Image-Guided Radiotherapy for Prostate Cancer? A Preliminary Multicentric Analysis.","authors":"Cristiano Grossi, Fernando Munoz, Ilaria Bonavero, Eulalie Joelle Tondji Ngassam, Elisabetta Garibaldi, Claudia Airaldi, Elena Celia, Daniela Nassisi, Andrea Brignoli, Elisabetta Trino, Lavinia Bianco, Silvia Leardi, Diego Bongiovanni, Chiara Valero, Maria Grazia Ruo Redda","doi":"10.3390/curroncol32060321","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radiotherapy (RT) is a mainstay treatment for prostate cancer (PC). Accurate delineation of organs at risk (OARs) is crucial for optimizing the therapeutic window by minimizing side effects. Manual segmentation is time-consuming and prone to inter-operator variability. This study investigates the performance of Limbus<sup>®</sup> Contour<sup>®</sup> (LC), a deep learning-based auto-contouring software, in delineating pelvic structures in PC patients.</p><p><strong>Methods: </strong>We evaluated LC's performance on key structures (bowel bag, bladder, rectum, sigmoid colon, and pelvic lymph nodes) in 52 patients. We compared auto-contoured structures with those manually delineated by radiation oncologists using different metrics.</p><p><strong>Results: </strong>LC achieved good agreement for the bladder (median Dice: 0.95) and rectum (median Dice: 0.83). However, limitations were observed for the bowel bag (median Dice: 0.64) and sigmoid colon (median Dice: 0.6), with inclusion of irrelevant structures. While the median Dice for pelvic lymph nodes was acceptable (0.73), the software lacked sub-regional differentiation, limiting its applicability in certain other oncologic settings.</p><p><strong>Conclusions: </strong>LC shows promise for automating OAR delineation in prostate radiotherapy, particularly for the bladder and rectum. Improvements are needed for bowel bag, sigmoid colon, and lymph node sub-regionalization. Further validation with a broader and larger patient cohort is recommended to assess generalizability.</p>","PeriodicalId":11012,"journal":{"name":"Current oncology","volume":"32 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192049/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/curroncol32060321","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Radiotherapy (RT) is a mainstay treatment for prostate cancer (PC). Accurate delineation of organs at risk (OARs) is crucial for optimizing the therapeutic window by minimizing side effects. Manual segmentation is time-consuming and prone to inter-operator variability. This study investigates the performance of Limbus® Contour® (LC), a deep learning-based auto-contouring software, in delineating pelvic structures in PC patients.

Methods: We evaluated LC's performance on key structures (bowel bag, bladder, rectum, sigmoid colon, and pelvic lymph nodes) in 52 patients. We compared auto-contoured structures with those manually delineated by radiation oncologists using different metrics.

Results: LC achieved good agreement for the bladder (median Dice: 0.95) and rectum (median Dice: 0.83). However, limitations were observed for the bowel bag (median Dice: 0.64) and sigmoid colon (median Dice: 0.6), with inclusion of irrelevant structures. While the median Dice for pelvic lymph nodes was acceptable (0.73), the software lacked sub-regional differentiation, limiting its applicability in certain other oncologic settings.

Conclusions: LC shows promise for automating OAR delineation in prostate radiotherapy, particularly for the bladder and rectum. Improvements are needed for bowel bag, sigmoid colon, and lymph node sub-regionalization. Further validation with a broader and larger patient cohort is recommended to assess generalizability.

基于深度学习的自动轮廓软件能否在前列腺癌体积图像引导放射治疗中实现准确的骨盆体积描绘?初步多中心分析。
背景:放疗(RT)是前列腺癌(PC)的主要治疗方法。准确描绘危险器官(OARs)是通过最小化副作用来优化治疗窗口的关键。人工分割耗时长,而且容易引起操作者之间的差异。本研究探讨了Limbus®Contour®(LC)的性能,这是一种基于深度学习的自动轮廓软件,用于描绘PC患者的骨盆结构。方法:我们对52例患者的关键结构(肠袋、膀胱、直肠、乙状结肠和盆腔淋巴结)进行了LC的性能评估。我们比较了自动轮廓结构与放射肿瘤学家使用不同指标手动描绘的结构。结果:LC在膀胱(中位Dice: 0.95)和直肠(中位Dice: 0.83)中取得了良好的一致性。然而,对于肠袋(中位骰子:0.64)和乙状结肠(中位骰子:0.6),包括不相关的结构,观察到局限性。虽然盆腔淋巴结的中位Dice是可以接受的(0.73),但该软件缺乏次区域分化,限制了其在某些其他肿瘤环境中的适用性。结论:LC显示了在前列腺放射治疗中,尤其是膀胱和直肠放射治疗中,自动定位ar的前景。肠袋、乙状结肠和淋巴结分区需要改进。建议在更广泛和更大的患者队列中进一步验证,以评估通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current oncology
Current oncology ONCOLOGY-
CiteScore
3.30
自引率
7.70%
发文量
664
审稿时长
1 months
期刊介绍: Current Oncology is a peer-reviewed, Canadian-based and internationally respected journal. Current Oncology represents a multidisciplinary medium encompassing health care workers in the field of cancer therapy in Canada to report upon and to review progress in the management of this disease. We encourage submissions from all fields of cancer medicine, including radiation oncology, surgical oncology, medical oncology, pediatric oncology, pathology, and cancer rehabilitation and survivorship. Articles published in the journal typically contain information that is relevant directly to clinical oncology practice, and have clear potential for application to the current or future practice of cancer medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信