A photosynthetic egg based oxygen-releasing platform to promote angiogenesis and tissue regeneration in diabetic wounds.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Yu He, Ying Zhao, Xingtang Niu, Ting Su, Chenlu Wu, Xinhui Wang, Yuan Ma, Xiaoqi Huang, Dan Sun, Feng Lu, Qiang Chang
{"title":"A photosynthetic egg based oxygen-releasing platform to promote angiogenesis and tissue regeneration in diabetic wounds.","authors":"Yu He, Ying Zhao, Xingtang Niu, Ting Su, Chenlu Wu, Xinhui Wang, Yuan Ma, Xiaoqi Huang, Dan Sun, Feng Lu, Qiang Chang","doi":"10.1088/1758-5090/ade7b0","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic wounds represent a longstanding global health challenge attributable to tissue hypoxia resulting from impaired microcirculation, which impedes crucial physiological processes essential for wound healing, such as cell proliferation and migration. Oxygen-releasing biomaterials present a novel avenue for tissue reoxygenation therapy, offering advantages over conventional hyperbaric oxygen therapy. Herein, we developed a microcosmic oxygen-releasing platform (MORP) named photosynthetic egg by utilizing egg white hydrogel with inherent bioactive factors for regenerative strength and electrostatic adsorbed<i>Chlorella</i>bringing photosynthetic oxygen production. The dissolved oxygen concentration leaped to more than 10 mg l<sup>-1</sup>under hypoxic conditions through manipulating supplemental dosage and illumination intensity demonstrating high flexibility and controllability of MORP.<i>In vitro</i>experiments, coupled with transcriptome sequencing and quantitative real-time polymerase chain reaction analysis, demonstrated that MORP significantly augmented cell proliferation, migration, and angiogenesis, serving as a rejuvenating agent to alleviate DNA damage and cellular dysfunction in hypoxic environments. Further<i>in vivo</i>investigations substantiated that MORP expedited diabetic wound healing by fostering tissue regeneration, collagen deposition, and angiogenesis owing to its bioactive constituents and reoxygenation capabilities. These findings underscore the potential therapeutic efficacy of MORP as an innovative approach for managing diabetic wounds.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ade7b0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic wounds represent a longstanding global health challenge attributable to tissue hypoxia resulting from impaired microcirculation, which impedes crucial physiological processes essential for wound healing, such as cell proliferation and migration. Oxygen-releasing biomaterials present a novel avenue for tissue reoxygenation therapy, offering advantages over conventional hyperbaric oxygen therapy. Herein, we developed a microcosmic oxygen-releasing platform (MORP) named photosynthetic egg by utilizing egg white hydrogel with inherent bioactive factors for regenerative strength and electrostatic adsorbedChlorellabringing photosynthetic oxygen production. The dissolved oxygen concentration leaped to more than 10 mg l-1under hypoxic conditions through manipulating supplemental dosage and illumination intensity demonstrating high flexibility and controllability of MORP.In vitroexperiments, coupled with transcriptome sequencing and quantitative real-time polymerase chain reaction analysis, demonstrated that MORP significantly augmented cell proliferation, migration, and angiogenesis, serving as a rejuvenating agent to alleviate DNA damage and cellular dysfunction in hypoxic environments. Furtherin vivoinvestigations substantiated that MORP expedited diabetic wound healing by fostering tissue regeneration, collagen deposition, and angiogenesis owing to its bioactive constituents and reoxygenation capabilities. These findings underscore the potential therapeutic efficacy of MORP as an innovative approach for managing diabetic wounds.

一种促进糖尿病伤口血管生成和组织再生的光合鸡蛋氧释放平台。
糖尿病伤口是一个长期的全球健康挑战,可归因于微循环受损导致的组织缺氧,这阻碍了伤口愈合所必需的关键生理过程,如细胞增殖和迁移。释氧生物材料为组织再氧治疗提供了一条新的途径,具有传统高压氧治疗(HBOT)的优势。本研究利用具有内在生物活性因子再生强度的蛋清水凝胶和静电吸附小球藻产生光合氧气,开发了一种名为“光合蛋”的微观释氧平台。在低氧条件下,通过调节添加量和光照强度,溶解氧(DO)浓度跃至10 mg/L以上,显示出MORP具有较高的灵活性和可控性。体外实验,结合转录组测序和qRT-PCR分析,表明MORP显著增强细胞增殖、迁移和血管生成,作为一种恢复活力的剂,可以减轻缺氧环境下的DNA损伤和细胞功能障碍。进一步的体内研究证实,由于MORP的生物活性成分和再氧化能力,MORP通过促进组织再生、胶原沉积和血管生成来加速糖尿病伤口愈合。这些发现强调了MORP作为治疗糖尿病伤口的一种创新方法的潜在治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信