Modeling Dual-Task Performance: Identifying Key Predictors Using Artificial Neural Networks.

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Arash Mohammadzadeh Gonabadi, Farahnaz Fallahtafti, Judith Heselton, Sara A Myers, Ka-Chun Siu, Julie Blaskewicz Boron
{"title":"Modeling Dual-Task Performance: Identifying Key Predictors Using Artificial Neural Networks.","authors":"Arash Mohammadzadeh Gonabadi, Farahnaz Fallahtafti, Judith Heselton, Sara A Myers, Ka-Chun Siu, Julie Blaskewicz Boron","doi":"10.3390/biomimetics10060351","DOIUrl":null,"url":null,"abstract":"<p><p>Dual-task paradigms that combine cognitive and motor tasks offer a valuable lens for detecting subtle impairments in cognitive and physical functioning, especially in older adults. This study used artificial neural network (ANN) modeling to predict clinical, cognitive, and psychosocial outcomes from integrated gait, speech-linguistic, demographic, physiological, and psychological data collected during single- and dual-task conditions. Forty healthy adults (ages 20-84) completed physical, cognitive, and psychosocial assessments and a dual-task walking task involving cell phone use. ANN models were optimized using hyperparameter tuning and k-fold cross-validation to predict outcomes such as the Montreal Cognitive Assessment (MOCA), Trail Making Tests (TMT A and B), Activities-Specific Balance Confidence (ABC) Scale, Geriatric Depression Scale (GDS), and measures of memory, affect, and social support. The models achieved high accuracy for MOCA (100%), ABC (80%), memory function (80%), and social support satisfaction (75%). Feature importance analyses revealed key predictors such as speech-linguistic markers and sensory impairments. First-person plural pronoun used and authenticity of internal thoughts during dual-task emerged as strong predictors of MOCA and memory. Models were less accurate for complex executive tasks like TMT A and B. These findings support the potential of ANN models for the early detection of cognitive and psychosocial changes.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190634/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10060351","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dual-task paradigms that combine cognitive and motor tasks offer a valuable lens for detecting subtle impairments in cognitive and physical functioning, especially in older adults. This study used artificial neural network (ANN) modeling to predict clinical, cognitive, and psychosocial outcomes from integrated gait, speech-linguistic, demographic, physiological, and psychological data collected during single- and dual-task conditions. Forty healthy adults (ages 20-84) completed physical, cognitive, and psychosocial assessments and a dual-task walking task involving cell phone use. ANN models were optimized using hyperparameter tuning and k-fold cross-validation to predict outcomes such as the Montreal Cognitive Assessment (MOCA), Trail Making Tests (TMT A and B), Activities-Specific Balance Confidence (ABC) Scale, Geriatric Depression Scale (GDS), and measures of memory, affect, and social support. The models achieved high accuracy for MOCA (100%), ABC (80%), memory function (80%), and social support satisfaction (75%). Feature importance analyses revealed key predictors such as speech-linguistic markers and sensory impairments. First-person plural pronoun used and authenticity of internal thoughts during dual-task emerged as strong predictors of MOCA and memory. Models were less accurate for complex executive tasks like TMT A and B. These findings support the potential of ANN models for the early detection of cognitive and psychosocial changes.

双任务性能建模:使用人工神经网络识别关键预测因子。
结合认知和运动任务的双任务范式为检测认知和身体功能的细微损伤提供了有价值的视角,特别是在老年人中。本研究使用人工神经网络(ANN)建模,通过在单任务和双任务条件下收集的综合步态、言语语言、人口统计学、生理和心理数据来预测临床、认知和社会心理结果。40名健康成人(年龄20-84岁)完成了身体、认知和心理社会评估,并完成了涉及手机使用的双任务步行任务。利用超参数调整和k-fold交叉验证对神经网络模型进行优化,以预测蒙特利尔认知评估(MOCA)、轨迹制作测试(TMT A和B)、特定活动平衡信心量表(ABC)、老年抑郁量表(GDS)以及记忆、情感和社会支持测量等结果。模型在MOCA(100%)、ABC(80%)、记忆功能(80%)和社会支持满意度(75%)方面具有较高的准确率。特征重要性分析揭示了关键的预测因素,如语言标记和感觉障碍。双任务中第一人称复数代词的使用和内心想法的真实性对MOCA和记忆有很强的预测作用。对于复杂的执行任务,如TMT A和b,模型的准确性较低。这些发现支持了神经网络模型在早期发现认知和社会心理变化方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信