Fang Li, Congteng Dai, Abdelazim G Hussien, Rong Zheng
{"title":"IPO: An Improved Parrot Optimizer for Global Optimization and Multilayer Perceptron Classification Problems.","authors":"Fang Li, Congteng Dai, Abdelazim G Hussien, Rong Zheng","doi":"10.3390/biomimetics10060358","DOIUrl":null,"url":null,"abstract":"<p><p>The Parrot Optimizer (PO) is a new optimization algorithm based on the behaviors of trained Pyrrhura Molinae parrots. In this paper, an improved PO (IPO) is proposed for solving global optimization problems and training the multilayer perceptron. The basic PO is enhanced by using three improvements, which are aerial search strategy, modified staying behavior, and improved communicating behavior. The aerial search strategy is derived from Arctic Puffin Optimization and is employed to enhance the exploration ability of PO. The staying behavior and communicating behavior of PO are modified using random movement and roulette fitness-distance balance selection methods to achieve a better balance between exploration and exploitation. To evaluate the optimization performance of the proposed IPO, twelve CEC2022 test functions and five standard classification datasets are selected for the experimental tests. The results between IPO and the other six well-known optimization algorithms show that IPO has superior performance for solving complex global optimization problems. The results between IPO and the other six well-known optimization algorithms show that IPO has superior performance for solving complex global optimization problems. In addition, IPO has been applied to optimize a multilayer perceptron model for classifying the oral English teaching quality evaluation dataset. An MLP model with a 10-21-3 structure is constructed for the classification of evaluation outcomes. The results show that IPO-MLP outperforms other algorithms with the highest classification accuracy of 88.33%, which proves the effectiveness of the developed method.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190212/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10060358","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Parrot Optimizer (PO) is a new optimization algorithm based on the behaviors of trained Pyrrhura Molinae parrots. In this paper, an improved PO (IPO) is proposed for solving global optimization problems and training the multilayer perceptron. The basic PO is enhanced by using three improvements, which are aerial search strategy, modified staying behavior, and improved communicating behavior. The aerial search strategy is derived from Arctic Puffin Optimization and is employed to enhance the exploration ability of PO. The staying behavior and communicating behavior of PO are modified using random movement and roulette fitness-distance balance selection methods to achieve a better balance between exploration and exploitation. To evaluate the optimization performance of the proposed IPO, twelve CEC2022 test functions and five standard classification datasets are selected for the experimental tests. The results between IPO and the other six well-known optimization algorithms show that IPO has superior performance for solving complex global optimization problems. The results between IPO and the other six well-known optimization algorithms show that IPO has superior performance for solving complex global optimization problems. In addition, IPO has been applied to optimize a multilayer perceptron model for classifying the oral English teaching quality evaluation dataset. An MLP model with a 10-21-3 structure is constructed for the classification of evaluation outcomes. The results show that IPO-MLP outperforms other algorithms with the highest classification accuracy of 88.33%, which proves the effectiveness of the developed method.