Inversion of Biological Strategies in Engineering Technology: A Case Study of the Underwater Soft Robot.

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Siqing Chen, He Xu, Xueyu Zhang, Tian Jiang, Zhen Ma
{"title":"Inversion of Biological Strategies in Engineering Technology: A Case Study of the Underwater Soft Robot.","authors":"Siqing Chen, He Xu, Xueyu Zhang, Tian Jiang, Zhen Ma","doi":"10.3390/biomimetics10060362","DOIUrl":null,"url":null,"abstract":"<p><p>Bio-inspired design, a paradigm-shifting methodology that translates evolutionary mechanisms into engineering solutions, has established itself as a cornerstone for pioneering innovation in multifaceted technological systems. Despite its promise, the inherent complexity of biological systems and interdisciplinary knowledge gaps hinder the effective translation of biological principles into practical engineering solutions. This study introduces a structured framework integrating large language models (LLMs) with a function-behavior-characteristic-environment (F-B-C-E) paradigm to systematize biomimetic design processes. We propose a standardized F-B-C-E knowledge model to formalize biological strategy representations, coupled with a BERT-based pipeline for automated inversion of biological strategies into engineering applications. To optimize strategy selection, a hybrid decision-making methodology combining VIKOR multi-criteria analysis and rank correlation is developed. The framework's functional robustness is validated via aquatic robotic system implementations, wherein three biomimetic propulsion modalities-oscillatory caudal propulsion, pulsed hydrodynamic thrust generation, and autonomous peristaltic locomotion-demonstrate quantifiable enhancements in locomotion efficiency and environmental adaptability metrics. These results underscore the robustness of the proposed inversion methodology in resolving intricate engineering problems through systematic biomimetic translation.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191258/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10060362","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bio-inspired design, a paradigm-shifting methodology that translates evolutionary mechanisms into engineering solutions, has established itself as a cornerstone for pioneering innovation in multifaceted technological systems. Despite its promise, the inherent complexity of biological systems and interdisciplinary knowledge gaps hinder the effective translation of biological principles into practical engineering solutions. This study introduces a structured framework integrating large language models (LLMs) with a function-behavior-characteristic-environment (F-B-C-E) paradigm to systematize biomimetic design processes. We propose a standardized F-B-C-E knowledge model to formalize biological strategy representations, coupled with a BERT-based pipeline for automated inversion of biological strategies into engineering applications. To optimize strategy selection, a hybrid decision-making methodology combining VIKOR multi-criteria analysis and rank correlation is developed. The framework's functional robustness is validated via aquatic robotic system implementations, wherein three biomimetic propulsion modalities-oscillatory caudal propulsion, pulsed hydrodynamic thrust generation, and autonomous peristaltic locomotion-demonstrate quantifiable enhancements in locomotion efficiency and environmental adaptability metrics. These results underscore the robustness of the proposed inversion methodology in resolving intricate engineering problems through systematic biomimetic translation.

工程技术中的生物策略反转:以水下软机器人为例。
生物启发设计是一种范式转换方法,将进化机制转化为工程解决方案,已成为多方面技术系统开创性创新的基石。尽管前景光明,但生物系统固有的复杂性和跨学科的知识差距阻碍了将生物学原理有效地转化为实际的工程解决方案。本研究引入了一个结构化框架,将大型语言模型(llm)与功能-行为-特征环境(F-B-C-E)范式相结合,以系统化仿生设计过程。我们提出了一个标准化的F-B-C-E知识模型来形式化生物策略表示,并结合基于bert的管道将生物策略自动转化为工程应用。为了优化战略选择,提出了一种结合VIKOR多准则分析和等级关联的混合决策方法。该框架的功能稳健性通过水生机器人系统实现进行了验证,其中三种仿生推进模式-振荡尾鳍推进,脉冲流体动力推力产生和自主蠕动运动-展示了运动效率和环境适应性指标的可量化增强。这些结果强调了所提出的反演方法在通过系统仿生翻译解决复杂工程问题方面的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信