Hybrid Clustering-Enhanced Brain Storm Optimization Algorithm for Efficient Multi-Robot Path Planning.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Guangping Qiu, Jizhong Deng, Jincan Li, Weixing Wang
{"title":"Hybrid Clustering-Enhanced Brain Storm Optimization Algorithm for Efficient Multi-Robot Path Planning.","authors":"Guangping Qiu, Jizhong Deng, Jincan Li, Weixing Wang","doi":"10.3390/biomimetics10060347","DOIUrl":null,"url":null,"abstract":"<p><p>To address the core challenges in multi-robot path planning (MRPP) within large-scale, complex environments-namely path conflicts, suboptimal task allocation, and computational inefficiency-this paper introduces a Hybrid Clustering-Enhanced Brain Storm Optimization (HC-BSO) algorithm designed to improve both path quality and computational efficiency significantly. For optimizing initial task assignment, the conventional K-Means clustering method is supplanted by a hybrid clustering methodology that integrates Mini-Batch K-Means with Density-Based Spatial Clustering of Applications with Noise (DBSCAN), facilitating an efficient and robust partitioning of task points. Concurrently, we incorporate a two-stage exploration-perturbation evolutionary strategy. This strategy effectively balances global exploration with local exploitation, thereby enhancing solution diversity and search depth. Comparative analyses against the standard Brain Storm Optimization (BSO) and other prominent swarm intelligence algorithms reveal that HC-BSO exhibits significant advantages in terms of total path length, computational time, and path conflict avoidance. Notably, in large-scale, multi-task scenarios, HC-BSO consistently generates high-quality, conflict-free paths, demonstrating superior stability, convergence, and scalability.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10060347","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To address the core challenges in multi-robot path planning (MRPP) within large-scale, complex environments-namely path conflicts, suboptimal task allocation, and computational inefficiency-this paper introduces a Hybrid Clustering-Enhanced Brain Storm Optimization (HC-BSO) algorithm designed to improve both path quality and computational efficiency significantly. For optimizing initial task assignment, the conventional K-Means clustering method is supplanted by a hybrid clustering methodology that integrates Mini-Batch K-Means with Density-Based Spatial Clustering of Applications with Noise (DBSCAN), facilitating an efficient and robust partitioning of task points. Concurrently, we incorporate a two-stage exploration-perturbation evolutionary strategy. This strategy effectively balances global exploration with local exploitation, thereby enhancing solution diversity and search depth. Comparative analyses against the standard Brain Storm Optimization (BSO) and other prominent swarm intelligence algorithms reveal that HC-BSO exhibits significant advantages in terms of total path length, computational time, and path conflict avoidance. Notably, in large-scale, multi-task scenarios, HC-BSO consistently generates high-quality, conflict-free paths, demonstrating superior stability, convergence, and scalability.

多机器人高效路径规划的混合聚类增强头脑风暴优化算法。
为了解决大规模复杂环境中多机器人路径规划(MRPP)的核心挑战,即路径冲突、次优任务分配和计算效率低下,本文引入了一种混合聚类增强脑风暴优化(HC-BSO)算法,旨在显著提高路径质量和计算效率。为了优化初始任务分配,传统的K-Means聚类方法被一种混合聚类方法所取代,该方法将Mini-Batch K-Means与基于密度的带噪声应用空间聚类(DBSCAN)相结合,促进了任务点的高效鲁棒划分。同时,我们纳入了一个两阶段的探索-扰动进化策略。该策略有效地平衡了全局勘探与局部开发,从而提高了解的多样性和搜索深度。通过与标准的头脑风暴优化算法(BSO)和其他著名的群体智能算法的比较分析,发现HC-BSO在总路径长度、计算时间和路径冲突避免方面具有显著优势。值得注意的是,在大规模、多任务场景下,HC-BSO始终如一地生成高质量、无冲突的路径,表现出卓越的稳定性、收敛性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信