Development of Magnetic Sponges Using Steel Melting on 3D Carbonized Spongin Scaffolds Under Extreme Biomimetics Conditions.

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Bartosz Leśniewski, Martin Kopani, Anna Szczurek, Michał Matczak, Janusz Dubowik, Martyna Kotula, Anita Kubiak, Dmitry Tsurkan, Eliza Romańczuk-Ruszuk, Marek Nowicki, Krzysztof Nowacki, Iaroslav Petrenko, Hermann Ehrlich
{"title":"Development of Magnetic Sponges Using Steel Melting on 3D Carbonized Spongin Scaffolds Under Extreme Biomimetics Conditions.","authors":"Bartosz Leśniewski, Martin Kopani, Anna Szczurek, Michał Matczak, Janusz Dubowik, Martyna Kotula, Anita Kubiak, Dmitry Tsurkan, Eliza Romańczuk-Ruszuk, Marek Nowicki, Krzysztof Nowacki, Iaroslav Petrenko, Hermann Ehrlich","doi":"10.3390/biomimetics10060350","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a novel approach to fabricating magnetic sponge-like composites by melting various types of steel onto three-dimensional (3D) carbonized spongin scaffolds under extreme biomimetic conditions. Spongin, a renewable marine biopolymer with high thermal stability, was carbonized at 1200 °C to form a turbostratic graphite matrix capable of withstanding the high-temperature steel melting process (1450-1600 °C). The interaction between molten steel vapors and the carbonized scaffolds resulted in the formation of nanostructured iron oxide (primarily hematite) coatings, which impart magnetic properties to the resulting composites. Detailed characterization using SEM-EDX, HRTEM, FT-IR, and XRD confirmed the homogeneous distribution of iron oxides on and within the carbonized fibrous matrix. Electrochemical measurements further demonstrated the electrocatalytic potential of the composite, particularly the sample modified with stainless steel 316L-for the hydrogen evolution reaction (HER), offering promising perspectives for green hydrogen production. This work highlights the potential of extreme biomimetics to create functional, scalable, and sustainable materials for applications in catalysis, environmental remediation, and energy technologies.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190833/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10060350","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel approach to fabricating magnetic sponge-like composites by melting various types of steel onto three-dimensional (3D) carbonized spongin scaffolds under extreme biomimetic conditions. Spongin, a renewable marine biopolymer with high thermal stability, was carbonized at 1200 °C to form a turbostratic graphite matrix capable of withstanding the high-temperature steel melting process (1450-1600 °C). The interaction between molten steel vapors and the carbonized scaffolds resulted in the formation of nanostructured iron oxide (primarily hematite) coatings, which impart magnetic properties to the resulting composites. Detailed characterization using SEM-EDX, HRTEM, FT-IR, and XRD confirmed the homogeneous distribution of iron oxides on and within the carbonized fibrous matrix. Electrochemical measurements further demonstrated the electrocatalytic potential of the composite, particularly the sample modified with stainless steel 316L-for the hydrogen evolution reaction (HER), offering promising perspectives for green hydrogen production. This work highlights the potential of extreme biomimetics to create functional, scalable, and sustainable materials for applications in catalysis, environmental remediation, and energy technologies.

在极端仿生条件下利用钢熔炼三维碳化海绵支架开发磁性海绵。
本研究提出了一种在极端仿生条件下,将各种类型的钢熔化到三维(3D)碳化海绵支架上,制备磁性海绵状复合材料的新方法。海绵是一种具有高热稳定性的可再生海洋生物聚合物,在1200°C下碳化,形成能够承受高温钢熔化过程(1450-1600°C)的涡轮石墨基体。钢水蒸汽与碳化支架之间的相互作用导致纳米结构氧化铁(主要是赤铁矿)涂层的形成,从而使所得到的复合材料具有磁性。利用SEM-EDX, HRTEM, FT-IR和XRD进行详细表征,证实了铁氧化物在碳化纤维基体上和内部的均匀分布。电化学测试进一步证明了复合材料的电催化潜力,特别是不锈钢316l修饰的样品对析氢反应(HER)的电催化潜力,为绿色制氢提供了有希望的前景。这项工作强调了极端仿生学在催化、环境修复和能源技术应用中创造功能性、可扩展和可持续材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信