Design and Control of Bio-Inspired Joints for Legged Robots Driven by Shape Memory Alloy Wires.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Xiaojie Niu, Xiang Yao, Erbao Dong
{"title":"Design and Control of Bio-Inspired Joints for Legged Robots Driven by Shape Memory Alloy Wires.","authors":"Xiaojie Niu, Xiang Yao, Erbao Dong","doi":"10.3390/biomimetics10060378","DOIUrl":null,"url":null,"abstract":"<p><p>Bio-inspired joints play a pivotal role in legged robots, directly determining their motion capabilities and overall system performance. While shape memory alloy (SMA) actuators present superior power density and silent operation compared to conventional electromechanical drives, their inherent nonlinear hysteresis and restricted strain capacity (typically less than 5%) limit actuation range and control precision. This study proposes a bio-inspired joint integrating an antagonistic actuator configuration and differential dual-diameter pulley collaboration, achieving amplified joint stroke (±60°) and bidirectional active controllability. Leveraging a comprehensive experimental platform, precise reference input tracking is realized through adaptive fuzzy control. Furthermore, an SMA-driven bio-inspired leg is developed based on this joint, along with a motion retargeting framework to map human motions onto the robotic leg. Human gait tracking experiments conducted on the leg platform validate its motion performance and explore practical applications of SMA in robotics.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191249/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10060378","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bio-inspired joints play a pivotal role in legged robots, directly determining their motion capabilities and overall system performance. While shape memory alloy (SMA) actuators present superior power density and silent operation compared to conventional electromechanical drives, their inherent nonlinear hysteresis and restricted strain capacity (typically less than 5%) limit actuation range and control precision. This study proposes a bio-inspired joint integrating an antagonistic actuator configuration and differential dual-diameter pulley collaboration, achieving amplified joint stroke (±60°) and bidirectional active controllability. Leveraging a comprehensive experimental platform, precise reference input tracking is realized through adaptive fuzzy control. Furthermore, an SMA-driven bio-inspired leg is developed based on this joint, along with a motion retargeting framework to map human motions onto the robotic leg. Human gait tracking experiments conducted on the leg platform validate its motion performance and explore practical applications of SMA in robotics.

形状记忆合金丝驱动足式机器人仿生关节设计与控制。
仿生关节在有腿机器人中起着关键作用,直接决定了它们的运动能力和整体系统性能。与传统的机电驱动相比,形状记忆合金(SMA)执行器具有更高的功率密度和静音性能,但其固有的非线性滞后和受限应变能力(通常小于5%)限制了执行范围和控制精度。本研究提出了一种仿生关节,集成了拮抗致动器配置和差动双直径滑轮协作,实现了关节行程放大(±60°)和双向主动可控。利用完善的实验平台,通过自适应模糊控制实现精确的参考输入跟踪。此外,基于该关节开发了sma驱动的仿生腿,以及将人体运动映射到机器人腿上的运动重定向框架。在腿部平台上进行了人体步态跟踪实验,验证了其运动性能,探索了SMA在机器人中的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信