{"title":"Design and Control of Bio-Inspired Joints for Legged Robots Driven by Shape Memory Alloy Wires.","authors":"Xiaojie Niu, Xiang Yao, Erbao Dong","doi":"10.3390/biomimetics10060378","DOIUrl":null,"url":null,"abstract":"<p><p>Bio-inspired joints play a pivotal role in legged robots, directly determining their motion capabilities and overall system performance. While shape memory alloy (SMA) actuators present superior power density and silent operation compared to conventional electromechanical drives, their inherent nonlinear hysteresis and restricted strain capacity (typically less than 5%) limit actuation range and control precision. This study proposes a bio-inspired joint integrating an antagonistic actuator configuration and differential dual-diameter pulley collaboration, achieving amplified joint stroke (±60°) and bidirectional active controllability. Leveraging a comprehensive experimental platform, precise reference input tracking is realized through adaptive fuzzy control. Furthermore, an SMA-driven bio-inspired leg is developed based on this joint, along with a motion retargeting framework to map human motions onto the robotic leg. Human gait tracking experiments conducted on the leg platform validate its motion performance and explore practical applications of SMA in robotics.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191249/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10060378","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bio-inspired joints play a pivotal role in legged robots, directly determining their motion capabilities and overall system performance. While shape memory alloy (SMA) actuators present superior power density and silent operation compared to conventional electromechanical drives, their inherent nonlinear hysteresis and restricted strain capacity (typically less than 5%) limit actuation range and control precision. This study proposes a bio-inspired joint integrating an antagonistic actuator configuration and differential dual-diameter pulley collaboration, achieving amplified joint stroke (±60°) and bidirectional active controllability. Leveraging a comprehensive experimental platform, precise reference input tracking is realized through adaptive fuzzy control. Furthermore, an SMA-driven bio-inspired leg is developed based on this joint, along with a motion retargeting framework to map human motions onto the robotic leg. Human gait tracking experiments conducted on the leg platform validate its motion performance and explore practical applications of SMA in robotics.