Yifei Bi, Jianing Luo, Jiwei Zhu, Junxiu Liu, Wei Li
{"title":"Decentralized Multi-Robot Navigation Based on Deep Reinforcement Learning and Trajectory Optimization.","authors":"Yifei Bi, Jianing Luo, Jiwei Zhu, Junxiu Liu, Wei Li","doi":"10.3390/biomimetics10060366","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-robot systems are significant in decision-making capabilities and applications, but avoiding collisions during movement remains a critical challenge. Existing decentralized obstacle avoidance strategies, while low in computational cost, often fail to ensure safety effectively. To address this issue, this paper leverages graph neural networks (GNNs) and deep reinforcement learning (DRL) to aggregate high-dimensional features as inputs for reinforcement learning (RL) to generate paths. Additionally, it introduces safety constraints through an artificial potential field (APF) to optimize these trajectories. Additionally, a constrained nonlinear optimization method further refines the APF-adjusted paths, resulting in the development of the GNN-RL-APF-Lagrangian algorithm. By combining APF and nonlinear optimization techniques, experimental results demonstrate that this method significantly enhances the safety and obstacle avoidance capabilities of multi-robot systems in complex environments. The proposed GNN-RL-APF-Lagrangian algorithm achieves a 96.43% success rate in sparse obstacle environments and 89.77% in dense obstacle scenarios, representing improvements of 59% and 60%, respectively, over baseline GNN-RL approaches. The method maintains scalability up to 30 robots while preserving distributed execution properties.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10060366","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-robot systems are significant in decision-making capabilities and applications, but avoiding collisions during movement remains a critical challenge. Existing decentralized obstacle avoidance strategies, while low in computational cost, often fail to ensure safety effectively. To address this issue, this paper leverages graph neural networks (GNNs) and deep reinforcement learning (DRL) to aggregate high-dimensional features as inputs for reinforcement learning (RL) to generate paths. Additionally, it introduces safety constraints through an artificial potential field (APF) to optimize these trajectories. Additionally, a constrained nonlinear optimization method further refines the APF-adjusted paths, resulting in the development of the GNN-RL-APF-Lagrangian algorithm. By combining APF and nonlinear optimization techniques, experimental results demonstrate that this method significantly enhances the safety and obstacle avoidance capabilities of multi-robot systems in complex environments. The proposed GNN-RL-APF-Lagrangian algorithm achieves a 96.43% success rate in sparse obstacle environments and 89.77% in dense obstacle scenarios, representing improvements of 59% and 60%, respectively, over baseline GNN-RL approaches. The method maintains scalability up to 30 robots while preserving distributed execution properties.